

# **DEPARTMENT OF ENVIRONMENTAL QUALITY**

KATHLEEN BABINEAUX BLANCO GOVERNOR MIKE D. McDANIEL, Ph.D. SECRETARY

| CERTIFIED MAIL | NI IMRÉR: |  |  |
|----------------|-----------|--|--|

LPDES FILE NUMBER: <u>LA0066630</u> AGENCY INTEREST NUMBER: <u>AI 19537</u> ACTIVITY NUMBER: <u>PER2005000</u>1

Jefferson Parish Department of Sewerage East Bank Wastewater Treatment Plant 1221 Elmwood Park Boulevard, Suite 803 Harahan, Louisiana 70123

Attention: Mr. Brett P. Todd, Director of the Department of Sewerage

Subject: Louisiana Pollutant Discharge Elimination System (LPDES) permit to discharge treated

sanitary wastewater into the Mississippi River from a publicly owned treatment works

serving Metairie, Jefferson, River Ridge, and other unincorporated areas.

## Gentlemen:

The Department of Environmental Quality proposes to reissue an LPDES permit with the effluent limitations, monitoring requirements, and special conditions listed in the attached DRAFT PERMIT. Please note that this is a DRAFT PERMIT only and as such does not grant any authorization to discharge. Authorization to discharge in accordance with this permitting action will only be granted after all requirements described herein are satisfied and by the subsequent issuance of a FINAL PERMIT.

<u>This Office will</u> publish the enclosed public notice one time in a widely circulated local newspaper in the area of the facility, and in the Department of Environmental Quality Public Notice Mailing List. In accordance with LAC 33:IX.6521.A, <u>the applicant shall receive and is responsible for paying the invoice(s)</u> from the newspaper(s). LAC 33:IX.6521.A states, "...the costs of publication shall be borne by the applicant".

The invoice, fee rating sheets, and a copy of the fee regulations will be sent under a separate cover letter as applicable. We must receive your fee payment by check, money order, or draft accompanied by the original and a copy of your invoice. A copy of the entire Louisiana Water Quality Regulations (Volume 14) may be obtained from the LDEQ Office of Environmental Assessment, Post Office Box 4314, Baton Rouge, Louisiana 70821-4314, (225) 219-3236.

Pursuant to LAC 33.IX.1309.I, LAC 33.IX.6509.A.1 and LAC 33.I.1701, you must pay any outstanding fees to the Department. Therefore, you are encouraged to verify your facility's fee status by contacting LDEQ's Office of Management and Finance, Financial Services Division at (225) 219-3863. Failure to pay in the manner and time prescribed could result in applicable enforcement actions as prescribed in the Environmental Quality Act, including, but not limited to revocation or

# **ENVIRONMENTAL SERVICES**

: PO BOX 4313, BATON ROUGE, LA 70821-4313 P:225-219-3181 F:225-219-3309 WWW.DEQ.LOUISIANA.GOV Jefferson Parish Department of Sewerage East Bank Wastewater Treatment Plant RE: LA0066630; AI 19537; PER20050001 Page Two (2)

suspension of the applicable permit, and/or assessment of a civil penalty against you.

A Municipal Water Pollution Prevention Environmental Audit Report Form (MWPP) will be furnished upon finalization of the permit. Please consult Part II, Section B of the permit for instructions regarding this audit.

For sanitary treatment plants, the plans and specifications must be approved by the Department of Health and Hospitals, Office of Public Health, 6867 Bluebonnet Road, Post Office Box 3, Baton Rouge, Louisiana 70810, telephone (225) 765-5044.

Should you have any questions concerning any part of the DRAFT PERMIT, public notice requirements, or fees, please contact Mr. Todd Franklin, Environmental Scientist 3, Office of Environmental Services, Permits Division, Municipal and General Water Permits Section, Post Office Box 4313, Baton Rouge, Louisiana 70821-4313 or telephone (225) 219-3102. Please reference your Agency Interest Number, Al 19537, and your Louisiana Pollutant Discharge Elimination System Number, LA0066630, on all future correspondence to the Department.

Sincerely.

Tom Killeen

**Environmental Scientist Manager** 

Municipal and General Water Permits Section

itf

Attachments (Public Notice, Permit, and Fact Sheet)

ec: Ms. Melissa Reboul

Water and Waste Permits Division

Ms. Gayle Denino

Office of Management & Finance

IO-W

Mr. Russell C. Watson United States Department of Interior

Fish & Wildlife Service

Permit Compliance Unit

Office of Environmental Compliance

Mr. Todd Franklin

Water and Waste Permits Division

# Public Notice Scheduled for Publication

The notice associated with the following:

Re: REQUEST FOR PUBLIC COMMENTS ON A DRAFT WATER DISCHARGE PERMIT JEFFERSON PARISH DEPARTMENT OF SEWERAGE / EAST BANK WASTEWATER TREATMENT PLANT AI NUMBER 19537, PERMIT NUMBER LA0066630, AND ACTIVITY NUMBER PER20050001 HARAHAN, JEFFERSON PARISH, LOUISIANA

is scheduled to publish in the following paper (s)

| Newspaper(s)       | Scheduled Publication Date* |
|--------------------|-----------------------------|
| The Times Picayune | Tuesday, May 9, 2006        |
|                    |                             |
|                    |                             |
|                    |                             |
|                    |                             |

In accordance with LAC 33:IX.6521.A, the applicant is responsible for payment of all costs of publication. Newspaper will bill applicant directly. Questions regarding publication or payment may be directed to:

DEQ Office of Environmental Services, Public Participation Group Staff:

Name: Dina Heidar

Phone: 225-219-3278

Email: dina.heidar@la.gov

Comments: none

\*Actual date of publication is pending confirmation of publication by newspaper(s)

PUBLIC NOTICE

# LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY (LDEQ) JEFFERSON PARISH DEPARTMENT OF SEWERAGE EAST BANK WASTEWATER TREATMENT PLANT DRAFT WATER DISCHARGE PERMIT

The LDEQ, Office of Environmental Services, is accepting written comments on a draft Louisiana Pollutant Discharge Elimination System (LPDES) permit prepared for Jefferson Parish Department of Sewerage, East Bank Wastewater Treatment Plant, 1221 Elmwood Park Boulevard, Suite 803, Harahan, LA 70123. The facility is located on #2 Humane Way in Harahan, Jefferson Parish. Upon the effective date of the final permit, the LPDES permit shall replace the previously issued State (LPDES) permit.

The principal discharge from this existing source is made into the Mississippi River (River Mile 112) in Subsegment 070301 of the Mississippi River Basin, waters of the state classified for primary contact recreation, secondary contact recreation, propagation of fish & wildlife, and drinking water supply. Under the SIC Code 4952, the applicant proposes to discharge treated sanitary wastewater from a publicly owned treatment works serving Metairie, Jefferson, River Ridge, and other unincorporated areas.

During the preparation of this permit, it has been determined that the discharge will have no adverse impact on the existing uses of the receiving waterbody. As with any discharge, however, some change in existing water quality may occur.

Written comments, written requests for a public hearing or written requests for notification of the final decision regarding this permit action may be submitted to Ms. Soumaya Ghosn at LDEQ, Public Participation Group, P.O. Box 4313, Baton Rouge, LA 70821-4313. Written comments and/or written requests must be received by 12:30 p.m., Tuesday, June 13, 2006. Written comments will be considered prior to a final permit decision.

If LDEQ finds a significant degree of public interest, a public hearing will be held. LDEQ will send notification of the final permit decision to the applicant and to each person who has submitted written comments or a written request for notification of the final decision.

The application, draft permit and fact sheet are available for review at the LDEQ, Public Records Center, Room 127, 602 North 5<sup>th</sup> Street, Baton Rouge, LA. Viewing hours are from 8:00 a.m. to 4:30 p.m., Monday through Friday (except holidays).

Inquiries or requests for additional information regarding this permit action should be directed to Mr. Todd Franklin, LDEQ, Water & Waste Permits Division, P.O. Box 4313, Baton Rouge, LA 70821-4313, phone (225) 219-3102.

Persons wishing to be included on the LDEQ permit public notice mailing list or for other public participation related questions should contact the Public Participation Group in writing at LDEQ, P.O. Box 4313, Baton Rouge, LA 70821-4313, by email at <a href="mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:ma

Permit public notices including electronic access to the draft permit and fact sheet can be viewed at the LDEQ permits public notice webpage at <a href="www.deq.state.la.us/news/PubNotice/">www.deq.state.la.us/news/PubNotice/</a> and general information related to the public participation in permitting activities can be viewed at <a href="www.deq.louisiana.gov/portal/tabid/2198/Default.aspx">www.deq.louisiana.gov/portal/tabid/2198/Default.aspx</a>.

Alternatively, individuals may elect to receive the permit public notices via email by subscribing to the LDEQ permits public notice List Server at <a href="http://www.state.la.us/ldbc/listservpage/ldeq\_pn\_listserv.htm">http://www.state.la.us/ldbc/listservpage/ldeq\_pn\_listserv.htm</a>.

All correspondence should specify Al Number 19537, Permit Number LA0066630, and Activity Number PER20050001.

Publication Date: Tuesday, May 9, 2006

form\_7132\_r00 01/17/06



LPDES PERMIT NUMBER:

<u>LA0066630</u>

AGENCY INTEREST NUMBER:

<u>AI 19537</u>

ACTIVITY NUMBER:

PER20050001

# office of environmental services Water Discharge Permit

Pursuant to the Clean Water Act, as amended (33 U.S.C. 1251 et seq.), and the Louisiana Environmental Quality Act, as amended (La. R. S. 30:2001 et seq.), rules and regulations effective or promulgated under the authority of said Acts, and in reliance on statements and representations heretofore made in the application, a Louisiana Pollutant Discharge Elimination System permit is issued authorizing

Jefferson Parish Department of Sewerage East Bank Wastewater Treatment Plant 1221 Elmwood Park Boulevard, Suite 803 Harahan, Louisiana 70123

Type Facility:

Publicly Owned Treatment Works serving Metairie, Jefferson, River Ridge, and

other unincorporated areas

Location:

on #2 Humane Way in Harahan, Jefferson Parish

Receiving Waters:

into the Mississippi River

to discharge in accordance with effluent limitations, monitoring requirements, and other conditions set forth in Parts I, II, and III attached hereto.

This permit shall become effective on

This permit and the authorization to discharge shall expire five (5) years from the effective date of the permit.

Issued on

DRAFT

Chuck Carr Brown, Ph. D. Assistant Secretary

GALVEZ BUILDING • 602 N. FIFTH STREET • P.O. BOX 4313 • BATON ROUGE, LA 70821-4313 • PHONE (225) 219-3181

Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# **FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS**

During the period **BEGINNING** on the effective date of the permit and **LASTING THROUGH** the expiration date of the permit the permittee is authorized to discharge from:

Outfall 001 (treated sanitary wastewater effluent, discharged into the Mississippi River, design capacity is 33 MGD).

Such discharges shall be limited and monitored by the permittee as specified below:

# **CONVENTIONAL/NONCONVENTIONAL POLLUTANTS**

|                                               |       | Disc               | harge/Limit        | ations            | Monitoring  | Requirements     |
|-----------------------------------------------|-------|--------------------|--------------------|-------------------|-------------|------------------|
| Elilient@hazetallie                           | Store | (lbs/day)          | (Exelly) Otherunis |                   | Measurement | Sample           |
|                                               | 9009  | Monthly<br>Average | Monthly<br>Average | Weekly<br>Average | Requency    | Тууро            |
| Flow (MGD)                                    | 50050 |                    | REPORT             | REPORT            | Continuous  | Recorder         |
| Biochemical Oxygen Demand (BOD <sub>5</sub> ) | 00310 | 8257               | 30 mg/l            | 45 mg/l           | 1/day       | 12 Hr. Composite |
| Total Suspended Solids (TSS)                  | 00530 | 8257               | 30 mg/l            | 45 mg/l           | 1/day       | 12 Hr. Composite |
| Fecal Coliform (colonies/100 ml) <sup>1</sup> | 74055 |                    | 200 col/100<br>ml  | 400 col/100<br>ml | 1/day       | Grab             |
| pH (standard units) <sup>3</sup>              | 00400 |                    |                    |                   | 1/day       | Grab             |
| Toxic Substances <sup>4</sup>                 | ·     |                    |                    |                   | 1/6 months  | 24 Hr. Composite |

# **BIOMONITORING**<sup>2</sup>

Whole Effluent Toxicity Testing <sup>2</sup>
Quality (Percent % UNLESS STATED)

|                     |               | Discharge                     | (Limitetions          | Monitoring             | Regulements      |
|---------------------|---------------|-------------------------------|-----------------------|------------------------|------------------|
| Species .           | <b>60:0</b> 9 | Monthly<br>Averege<br>Minhoun | 48<br>· Kow<br>Midhum | Messpensy<br>Frequency | Sample<br>Type   |
| Pimephales promelas | TEM6C         | REPORT11                      | REPORT <sup>1/</sup>  | 1/quarter              | 24 Hr. Composite |
|                     | ТОМ6С         | REPORT                        | REPORT                | 1/quarter              | 24 Hr. Composite |
|                     | TQM6C         | REPORT                        | REPORT                | 1/quarter              | 24 Hr. Composite |
| Daphnia pulex       | TEM3D         | REPORT1/                      | REPORT1/              | 1/quarter              | 24 Hr. Composite |
|                     | TOM3D         | REPORT                        | REPORT                | 1/quarter              | 24 Hr. Composite |
|                     | TQM3D         | REPORT                        | REPORT                | 1/quarter              | 24 Hr. Composite |

# PART I Page 3 of 3 Draft LA0066630; AI 19537; PER20050001

# FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

If a test failure has occurred and the required retests have been performed, the test results are to be reported on the DMR as follows:

|                           |                | Discharge                     | imitations           | Menticalin               | g Reguliements    |
|---------------------------|----------------|-------------------------------|----------------------|--------------------------|-------------------|
| . Blomenfleding<br>Releaf | Gode<br>Storet | Monthly<br>Minimum<br>Minimum | 48<br>How<br>Minimum | Measurement<br>Frequency | Sample<br>Type    |
| Retest #1                 | 22415          | REPORT <sup>1/</sup>          | REPORT <sup>1/</sup> | As Required              | 24 Hour Composite |
| Retest #2                 | 22416          | REPORT <sup>1/</sup>          | REPORT <sup>1/</sup> | As Required              | 24 Hour Composite |

Species Quality Reporting Units: Pass = 0, Fail = 1

There shall be no discharge of floating solids or visible foam in other than trace amounts.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location:

Outfall 001, at the point of discharge prior to mixing with other waters.

See Part II, Section A, Paragraph 9

See Part II, Section F, Whole Effluent Toxicity Testing Requirements

The pH shall not be less than <u>6.0</u> standard units nor greater than <u>9.0</u> standard units. The permittee shall report on the Discharge Monitoring Reports both the minimum and maximum instantaneous pH values measured.

See Part II, Section D, Toxic Substances Requirements

# PART II

#### OTHER REQUIREMENTS

In addition to the standard conditions required in all permits and listed in Part III, the office has established the following additional requirements in accordance with the Louisiana Water Quality Regulations.

#### SECTION A. GENERAL STATEMENTS

- Please be aware that the Department will be conducting TMDL's in the Mississippi River Basin scheduled for completion in 2010. The Department of Environmental Quality reserves the right to reopen the permit and impose more stringent discharge limitations and/or additional restrictions as a result of these TMDL's. Therefore, prior to upgrading or expanding this facility, the permittee should contact the Department to determine the status of the work being done to establish future effluent limitations and additional permit conditions.
- This permit does not in any way authorize the permittee to discharge a pollutant not listed or quantified in the application or limited or monitored for in the permit.
- Authorization to discharge pursuant to the conditions of this permit <u>does not</u> relieve the permittee of any liability for damages to state waters or private property. For discharges to private land, this permit does not relieve the permittee from obtaining proper approval from the landowner for appropriate easements and rights of way.
- 4. For definitions of monitoring and sampling terminology see Part III, Section F.
- 5. In the event that an unauthorized discharge into the Mississippi River or any other water of the state used for potable water supply within the State of Louisiana; from a permitted or unpermitted, licensed or unlicensed treatment works, operating facility, wharf, onshore riverside site, transport vehicle, or vessel; could reasonably be expected to interfere with or significantly impact downstream potable or industrial water usage, the discharger shall notify the Department immediately, but in no case later than one (1) hour after learning of the discharge, by telephone or other rapid communication means, in accordance with the notification procedures in Part III of this permit. In the event that notification for an unauthorized discharge is made into the Mississippi River, the discharger shall also notify the Lower Mississippi River Waterworks Warning Network immediately by telephone or other rapid communication means.
- 6. 24-hour Oral Reporting: Daily Maximum Limitation Violations

Under the provisions of Part III Section D.6.e.(3) of this permit, violations of daily maximum limitations for the following pollutants shall be reported orally to the Office of Environmental Compliance within 24 hours from the time the permittee became aware of the violation followed by a written report in seven (7) days.

Pollutants: None

- 7. As an exception to Part III Section D.6.e.(1), the permittee shall report all overflows in the collection system with the Discharge Monitoring Report submittal. These reports shall be summarized and reported in tabular format. The summaries shall include: the date, time, duration, location, estimated volume, and cause of the overflow; observed environmental impacts from the overflow; actions taken to address the overflow; and the ultimate discharge location if not contained (e.g., storm sewer system, ditch, tributary). All other overflows and overflows which endanger human health or the environment must be reported in the manner described in Part III, Section D.6 of the permit.
- 8. In accordance with La.R.S.40:1149, it shall be unlawful for any person, firm, or corporation, both municipal and private, operating a water supply system or sewerage system to operate same unless the competency of the operator is duly certified to by the State Health Officer. Furthermore, it shall be unlawful for any person to perform the duties of an operator without being duly certified. Therefore, Jefferson Parish Department of Sewerage should take whatever action is necessary to comply with La.R.S. 40:1149.

- 9. Please be aware, concentrations of Total Residual Chlorine (TRC) above 0.01 mg/L can cause or contribute to significant toxicity in receiving streams and biomonitoring testing. It is the permittee's responsibility to assure that no Total Residual Chlorine remains in the effluent after dechlorination in order to prevent toxicity in the receiving stream and in whole effluent toxicity testing.
- Monitoring results must be reported on a Discharge Monitoring Report (DMR) form (EPA No. 3320-1 or an approved substitute). All monitoring reports must be retained for a period of at least three (3) years from the date of the sample measurement. The permittee shall make available to this Department, upon request, copies of all monitoring data required by this permit.

If there is a no discharge event at any of the monitored outfall(s) during the reporting period, enter "NO DISCHARGE" in the upper right corner of the Discharge Monitoring Report.

Reporting periods shall end on the last day of the month. Monitoring results shall be summarized on a Discharge Monitoring Report (DMR) Form and submitted to the Office of Environmental Compliance as follows:

- A. For monitoring frequencies **once per month or more often** (i.e. 1/week, 1/day, 1/batch, 1/discharge event), one DMR form per month (summarize monitoring results monthly) must be prepared and submitted on a monthly basis, postmarked NO LATER THAN the 15<sup>th</sup> day of the month following each reporting period.
- B. For **once per quarter** monitoring frequenices, one DMR form per quarter must be prepared and submitted quarterly.
- C. For **once per six (6) months** monitoring frequencies, one DMR form per six month period must be prepared and submitted semi-annually.
- D. For once per year monitoring frequenices, one DMR per year must be submitted annually.

| QUARTERLY SU                | EMISSION SCHEDULE        |
|-----------------------------|--------------------------|
| Monfloring Period           | DMR Owe Date:            |
| January, February, March    | April 15 <sup>th</sup>   |
| April, May, June            | July 15 <sup>th</sup>    |
| July, August, September     | October 15 <sup>th</sup> |
| October, November, December | January 15 <sup>th</sup> |

| SEMPANNIALSUBI    | MIRRION SCHEDULE         |
|-------------------|--------------------------|
| Monitoring Pariod | DUR Dub Date             |
| January - June    | July 15 <sup>th</sup>    |
| July - December   | January 15 <sup>th</sup> |

| ANNUAL SUBMIS       | SION SONIEDULE:          |
|---------------------|--------------------------|
| Monfloring (Pariod) | DMR Drie Date            |
| January - December  | January 15 <sup>th</sup> |

PART II
Page 3 of 28
Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# **OTHER REQUIREMENTS (continued)**

Duplicate copies of DMR's (one set of originals and one set of copies) **signed and certified** as required by LAC 33:IX.2503, and all other reports (one set of originals) required by this permit shall be submitted to the **Permit Compliance Unit**, and the appropriate **LDEQ regional office** (one set of copies) at the following addresses:

Department of Environmental Quality
Office of Environmental Compliance
Enforcement Division
Permit Compliance Unit
Post Office Box 4312
Baton Rouge, Louisiana 70821-4312

Southeast Regional Office
Office of Environmental Compliance
Surveillance Division
201 Evans Road
Building 4, Suite 420
New Orleans, Louisiana 70123-5230

## SECTION B. MUNICIPAL WATER POLLUTION PREVENTION (MWPP)

#### **Pollution Prevention Requirements**

1. The permittee shall institute or continue programs directed towards pollution prevention. The permittee shall institute or continue programs to improve the operating efficiency and extend the useful life of the facility. The permittee will complete an annual Environmental Audit Report <u>each year</u> for the life of this permit according to the schedule below. A copy of the Environmental Audit Form has been attached to this permit. Please make additional copies to be utilized for each year of this permit. Additional copies can be obtained upon request.

The audit evaluation period is as follows:

| AuditPeriod Begins           | AndlyPerfod lands                             | Andli Report Completion Dete              |
|------------------------------|-----------------------------------------------|-------------------------------------------|
| Effective Date of the Permit | 12 Months from Audit Period<br>Beginning Date | 3 Months from Audit Period<br>Ending Date |

These reports shall discuss the following items:

- The influent loading, flow, and design capacity of the facility;
- b. The effluent quality and plant performance;
- The age of the wastewater treatment facility;
- d. Bypasses and overflows of the tributary sewerage system and treatment works;
- e. The ultimate disposition of the sewage sludge;
- f. Landing of sewage sludge and potential alternatives (if applicable);
- g. New developments at the facility;
- h. Operator certification and training;
- i. The financial status of the facility; and
- i. A subjective evaluation of conditions at the facility.
- A resolution from the permittee's governing body shall be obtained as part of the Environmental Audit Report. This resolution shall include, at a minimum, the following:
  - a. An acknowledgement that the governing body shall be obtained as part of the Environmental Audit Report;
  - b. A description of actions that the permittee will take to maintain compliance with the permit conditions, and if necessary, include a schedule outlining major projects to be accomplished.
- 3. The Environmental Audit Report and the governing body's resolution must be signed by a duly authorized representative of the permittee and shall be maintained with the permit and permit related records (i.e. lab data, DMRs), and made available upon request by duly authorized regional inspectors and/or LDEQ Headquarter representatives.

Draft LA0066630; Al 19537; PER20050001

# **OTHER REQUIREMENTS (continued)**

# SECTION C. CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- The permittee shall operate an industrial pretreatment program in accordance with Section 402(b)(8) of the Clean Water Act, the General Pretreatment Regulations (LAC 33:IX.Subpart 2.Chapter 61) and the approved POTW pretreatment program submitted by the permittee. The Jefferson Parish Pretreatment Program was approved on January 8, 1993 and is tracked under the Jefferson Parish East Bank WWTP LPDES Permit, LA0066630. The Program was modified on September 1, 1982 to incorporate new pretreatment regulations and Technically Based Local Limits (TBLLs) in the Program. Jefferson Parish has requested a modification to the Parish Pretreatment Program to incorporate revised TBLLs. This modification is hereby approved by LDEQ and shall become effective as of the effective date of this permit reissuance. The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:
  - a. Industrial user information shall be updated at a frequency adequate to ensure that all IUs are properly characterized at all times;
  - b. The frequency and nature of industrial user compliance monitoring activities by the permittee shall be commensurate with the character, consistency and volume of waste. However, in keeping with the requirements of LAC 33:IX.6115.F.2.e, the permittee must inspect and sample the effluent from each Significant Industrial User at least once a year. This is in addition to any industrial self-monitoring activities;
  - c. The permittee shall enforce and obtain remedies for noncompliance by any industrial users with applicable pretreatment standards and requirements;
  - d. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each Industrial User to ensure compliance with applicable Pretreatment Standards and Requirements. In the case of Industrial Users identified as significant under LAC 33:IX.6105, this control shall be achieved through permits or equivalent individual control mechanisms issued to each such user. Such control mechanisms must be enforceable and contain, at a minimum, the following conditions:
    - Statement of duration (in no case more than five years);
    - (2) Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
    - (3) Effluent limits based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
    - (4) Self-monitoring, sampling, reporting, notification and recordkeeping requirements, including an identification of the pollutants to be monitored, sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in LAC 33:IX, Chapter 61, categorical pretreatment standards, local limits, and State and local law; and
    - (5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines.
  - e. The permittee shall evaluate, at least once every two years, whether each Significant Industrial User needs a plan to control slug discharges. If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in LAC 33:IX.6115.F.2.e;
  - f. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program; and,
  - g. The approved program shall not be modified by the permittee without the prior approval of the Louisiana Department of Environmental Quality.

PART II Page 6 of 28

Draft LA0066630; Al 19537; PER20050001

## OTHER REQUIREMENTS (continued)

 The permittee shall establish and enforce specific limits to implement the provisions of LAC 33:IX.6109.A and B, as required by LAC 33:IX.6109.C. Each POTW with an approved pretreatment program shall continue to develop these limits as necessary and effectively enforce such limits.

The permittee shall, within sixty (60) days of the effective date of this permit, (1) submit a WRITTEN CERTIFICATION that a technical evaluation has demonstrated that the existing technically based local limits (TBLL) are based on current state water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination, OR (2) submit a WRITTEN NOTIFICATION that a technical evaluation revising the current TBLL and a draft sewer use ordinance which incorporates such revisions will be submitted within 12 months of the effective date of this permit.

Upon approval by the Office of Environmental Services, all specific prohibitions or limits developed under this requirement are deemed to be conditions of this permit. The specific prohibitions set out in LAC 33:IX.6109.B shall be enforced by the permittee unless modified under this provision.

3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in 40 CFR 122 Appendix D (NPDES Application Testing Requirements) Table II at least 1/year and the toxic pollutants in Table III at least 1/quarter. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least 1/quarter on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24 hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR 136. The effluent samples shall be analyzed to a level as required in (6) below. Where composite samples are inappropriate, due to sampling, holding time, or analytical constraints, at least 4 grab samples, taken at equal intervals over a representative 24 hour period, shall be taken.

4. The permittee shall prepare annually a list of Industrial Users, which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements. For the purposes of this Part, significant noncompliance shall be determined based upon the more stringent of either criteria established at LAC 33:IX.6115.F.2.g [rev. 7/24/90] or criteria established in the approved POTW pretreatment program. This list is to be published annually in the largest daily newspaper in the municipality during the month of September.

In addition, during the month of September the permittee shall submit an updated pretreatment program status report to the Louisiana Department of Environmental Quality, Office of Environmental Compliance containing the following information:

- a. An updated list of all significant industrial users. For each industrial user listed the following information shall be included:
  - (1) Standard Industrial Classification (SIC) code and categorical determination;
  - (2) Control document status. Whether the user has an effective control document, and the date such document was last issued, reissued, or modified, (indicate which industrial users were added to the system (or newly identified) within the previous 12 months);

- (3) A summary of all monitoring activities performed within the previous 12 months. The following information shall be reported:
  - \* total number of inspections performed;
  - total number of sampling visits made;
- (4) Status of compliance with both effluent limitations and reporting requirements. Compliance status shall be defined as follows:
  - \* Compliant (C) no violations during the previous 12 month period;
  - \* Non-compliant (NC) one or more violations during the previous 12 months but does not meet the criteria for significantly noncompliant industrial users;
  - \* Significant Noncompliance (SN) in accordance with requirements described in d. above; and
- (5) For significantly noncompliant industrial users, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.) and current compliance status. If ANY industrial user was on a schedule to attain compliance with effluent limits, indicate the date the schedule was issued and the date compliance is to be attained.
- b. A list of all significant industrial users whose authorization to discharge was terminated or revoked during the preceding 12 month period and the reason for termination.
- c. A report on any interference, pass through, upset or POTW permit violations known or suspected to be caused by industrial contributors and actions taken by the permittee in response.
- d. The results of all influent and effluent analyses performed pursuant to Part II(C)(3) above.
- e. A copy of the newspaper publication of the significantly noncompliant industrial users giving the name of the newspaper and the date published, and
- f. The information requested may be submitted in tabular form as per the example tables provided for your convenience.
- g. The monthly average water quality based effluent concentration necessary to meet the state water quality standards as developed in the approved technically based local limits.

A copy of the pretreatment program status report must also be submitted to the Office of Environmental Compliance, Permit Compliance Unit at the following address:

Louisiana Department of Environmental Quality
Office of Environmental Compliance
Permit Compliance Unit
Post Office Box 4312
Baton Rouge, Louisiana 70821

PART II
Page 8 of 28
Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# **OTHER REQUIREMENTS (continued)**

- 5. The permittee shall provide adequate notice of the following:
  - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Act if it were directly discharging those pollutants; and
  - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on (i) the quality and quantity of effluent to be introduced into the treatment works, and (ii) any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

6. All effluent monitoring conducted in accordance with Part II(C)(3) above shall meet the Minimum Quantification Levels (MQL) shown in the table below:

# MINIMUM QUANTIFICATION LEVELS (MQLs)

|                                          | N.  | EPAN            |                                         | Ja*                | FPAS           |                                                          | <b>新</b> 從 | EPA             |
|------------------------------------------|-----|-----------------|-----------------------------------------|--------------------|----------------|----------------------------------------------------------|------------|-----------------|
| (Polltfeint                              |     | Teste<br>Method | Polldent                                |                    | Test<br>Method | Politian                                                 | Pg/L       | oTest<br>Method |
| METALS AND CYANIDE VOLATILE COMPO        |     | 大 一种开始 一种 经     |                                         | VOLATILE COMPOUNDS |                | MILENER                                                  |            |                 |
| Antimony (Total) <sup>1</sup>            | 60  | 200.7           | Benzene <sup>4</sup>                    | 10                 | 624            | 1,1,2-Trichloroethane <sup>5</sup>                       | 1          | 624             |
| Arsenic (Total) <sup>1</sup>             | 10  | 206.2           | Bromoform <sup>5</sup>                  | 10                 | 624            | Trichloroethylene <sup>5</sup>                           | 1          | 624             |
| Beryllium (Total) <sup>1</sup>           | 5   | 200.7           | Carbon Tetrachloride⁵                   | 10                 | 624            | Vinyl Chloride⁵                                          | 1          | 624             |
| Cadmium (Total) <sup>2</sup>             | 1   | 213.2           | Chlorobenzene <sup>5</sup>              | 10                 | 624            | ACID COMPOUNDS                                           |            |                 |
| Chromium (Total) <sup>1</sup>            | 10  | 200.7           | Chlorodibromomethane⁵                   | 10                 | 624            | 2-Chlorophenol <sup>5</sup>                              | 1          | 625             |
| Chromium (3+) <sup>1</sup>               | 10  | 200.7           | Chloroethane <sup>6</sup>               | 50                 | 624            | 2,4-Dichlorophenol <sup>5</sup>                          | 1          | 625             |
| Chromium (6+) <sup>1</sup>               | 10  | 200.7           | 2-Chloroethyl vinyl ether <sup>4</sup>  | 10                 | 624            | 2,4-Dimethylphenol <sup>7</sup>                          | 1          | 625             |
| Copper (Total) <sup>2</sup>              | 10  | 220.2           | Chloroform <sup>5</sup>                 | 10                 | 624            | 4,6-Dinitro-o-Cresol[2 methyl 4,6-dinitrophenol]         | 5          | 625             |
| Lead (Total) <sup>2</sup>                | 5   | 239.2           | Dichlorobromomethane <sup>5</sup>       | 10                 | 624            | 2,4-Dinitrophenol <sup>5</sup>                           | 5          | 625             |
| Mercury (Total) <sup>1</sup>             | 0.2 | 245.1           | 1,1-Dichloroethane <sup>5</sup>         | 10                 | 624            | 2-Nitrophenol <sup>6</sup>                               | 2          | 625             |
| Molybdenum (Total) <sup>9</sup>          | 30  | 200.7           | 1,2-Dichloroethane <sup>5</sup>         | 10                 | 624            | 4-Nitrophenol⁵                                           | 5          | 625             |
| Nickel (Total) <sup>1</sup> [Freshwater] | 40  | 200.7           | 1,1-Dichloroethylene <sup>s</sup>       | 10                 | 624            | p-Chloro-m-Cresol [4 chloro-3-methylphenol] <sup>5</sup> | 1          | 625             |
| Nickel (Total) <sup>2</sup> [Marine]     | 5   | 249.2           | 1,2-Dichloropropane <sup>5</sup>        | 10                 | 624            | Pentachlorophenol⁵                                       | 5          | 625             |
| Selenium (Total) <sup>1</sup>            | 5   | 270.2           | 1,3-Dichloropropylene <sup>5</sup>      | 10                 | 624            | Phenol <sup>5</sup>                                      | 1          | 625             |
| Silver (Total) <sup>2</sup>              | 2   | 272.2           | Ethylbenzene <sup>5</sup>               | 10                 | 624            | 2,4,6-Trichlorophenol <sup>5</sup>                       | 1          | 625             |
| Thallium (Total)¹                        | 10  | 279.2           | Methyl Bromide [Bromomethane]6          | 50                 | 624            | BASE/NEUTRAL COMPOUND                                    | <u>)S</u>  |                 |
| Zinc (Total) <sup>1</sup>                | 20  | 200.7           | Methyl Chloride [Chloromethane]6        | 50                 | 624            | Acenaphthene <sup>5</sup>                                | 1          | 625             |
| Cyanide (Total) <sup>1</sup>             | 10  | 335.2           | Methylene Chloride⁵                     | 20                 | 624            | Acenaphthylene <sup>5</sup>                              | 1          | 625             |
| DIOXIN                                   |     |                 | 1,1,2,2-Tetrachloroethane <sup>5</sup>  | 10                 | 624            | Anthracene <sup>5</sup>                                  | 1          | 625             |
| TCDD <sup>3</sup>                        | .0  | 1613            | Tetrachloroethylene⁵                    | 10                 | 624            | Benzidine <sup>4</sup>                                   | 5          | 625             |
| VOLATILE COMPO                           | UNE | <u>) S</u>      | Toluene <sup>5</sup>                    | 10                 | 624            | Benzo(a)anthracene <sup>5</sup> 1                        |            | 625             |
| Acrolein <sup>4</sup>                    | 50  | 624             | 1,2-trans-Dichloroethylene <sup>5</sup> | 10                 | 624            | Benzo(a)pyrene <sup>5</sup>                              | 1          | 625             |
| Acrylonitrile⁴                           | 50  | 624             | 1,1,1-Trichloroethane⁵                  | 10                 | 624            | 3,4-Benzofluoranthene <sup>5</sup>                       | 1          | 625             |

Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# OTHER REQUIREMENTS (continued)

#### MINIMUM QUANTIFICATION LEVELS (continued)

| Politian                                  | TO(T)<br>NO(T) | EPA<br>Test<br>Method | Gollotani                                                      | iiiiTr<br>Meir | ERA<br>Test<br>Mathés | / Rollmant                      | MOI<br>MOI | ERA<br>Test<br>Method |
|-------------------------------------------|----------------|-----------------------|----------------------------------------------------------------|----------------|-----------------------|---------------------------------|------------|-----------------------|
| BASE/NEUTRAL COM                          | POU            | NDS                   | BASE/NEUTRAL COMPOUNDS                                         | <u>s</u>       |                       | PESTICIO                        | DES        |                       |
| Benzo(ghi)perylene <sup>6</sup>           | 20             | 625                   | 1,2-Diphenylhydrazine <sup>4</sup>                             | 20             | 625                   | Delta-BHC <sup>7</sup>          | .05        | 608                   |
| Benzo(k)fluoranthene <sup>5</sup>         | 10             | 625                   | Fluoranthene <sup>5</sup>                                      | 10             | 625                   | Chlordane <sup>7</sup>          | .2         | 608                   |
| Bis(2-chloroethoxy) methane <sup>5</sup>  | 10             | 625                   | Fluorene <sup>5</sup>                                          | 10             | 625                   | 4,4'-DDT <sup>7</sup>           | .1         | 608                   |
| Bis(2-chloroethyl) ether <sup>5</sup>     | 10             | 625                   | Hexachlorobenzene <sup>5</sup>                                 | 10             | 625                   | 4,4'-DDE (p,p-                  | .1         | 608                   |
| Bis(2-chloroisopropyl) ether <sup>5</sup> | 10             | 625                   | Hexachlorobutadiene <sup>5</sup>                               | 10             | 625                   | 4,4'-DDD (p,p-                  | .1         | 608                   |
| Bis(2-ethylhexyl) phthalate5              | 10             | 625                   | Hexachtorocyclopentadiene <sup>5</sup>                         | 10             | 625                   | Dieldrin <sup>7</sup>           | .1         | 608                   |
| 4-Bromophenyl phenyl ether <sup>5</sup>   | 10             | 625                   | Hexachloroethane <sup>6</sup>                                  | 20             | 625                   | Alpha-endosulfan <sup>7</sup>   | .1         | 608                   |
| Butyl benzyl phthalate5                   | 10             | 625                   | Indeno (1,2,3-cd) pyrene <sup>5</sup> (2,3-o-phenylene pyrene) | 20             | 625                   | Beta-endosulfan <sup>7</sup>    | .1         | 608                   |
| 2-Chloronapthalene <sup>5</sup>           | 10             | 625                   | Isophorone <sup>5</sup>                                        | 10             | 625                   | Endosulfan sulfate <sup>7</sup> | .1         | 608                   |
| 4-Chlorophenyl phenyl ether⁵              | 10             | 625                   | Naphthalene <sup>5</sup>                                       | 10             | 625                   | Endrin <sup>7</sup>             | .1         | 608                   |
| Chrysene <sup>5</sup>                     | 10             | 625                   | Nitrobenzene⁵                                                  | 10             | 625                   | Endrin aldehyde <sup>7</sup>    | .1         | 608                   |
| Dibenzo (a,h) anthracene <sup>6</sup>     | 20             | 625                   | N-nitrosodimethylamine <sup>6</sup>                            | 50             | 625                   | Heptachlor <sup>7</sup>         | .05        | 608                   |
| 1,2-Dichlorobenzene⁵                      | 10             | 625                   | N-nitrosodi-n-propylamine <sup>6</sup>                         | 20             | 625                   | Heptachlor epoxide <sup>7</sup> | .05        | 608                   |
| 1,3-Dichlorobenzene⁵                      | 10             | 625                   | N-nitrosodiphenylamine <sup>6</sup>                            | 20             | 625                   | PCB-12427 ·                     | 1.0        | 608                   |
| 1,4-Dichlorobenzene <sup>5</sup>          | 10             | 625                   | Phenanthrene <sup>5</sup>                                      | 10             | 625                   | PCB-1254                        | 1.0        | 608                   |
| 3,3'-Dichlorobenzidine <sup>6</sup>       | 50             | 625                   | Pyrene <sup>5</sup>                                            | 10             | 625                   | PCB-1221                        | 1.0        | 608                   |
| Diethyl Phthalate⁵                        | 10             | 625                   | 1,2,4-Trichlorobenzene <sup>5</sup>                            | 10             | 625                   | PCB-1232                        | 1.0        | 608                   |
| Dimethyl Phthalate <sup>5</sup>           | 10             | 625                   | PESTICIDES                                                     |                |                       | PCB-1248                        | 1.0        | 608                   |
| Di-n-Butyl Phthalate⁵ *                   | 10             | 625                   | Aldrin <sup>7</sup>                                            | .05            | 608                   | PCB-1260                        | 1.0        | 608                   |
| 2,4-Dinitrotoluene <sup>5</sup>           | 10             | 625                   | Alpha-BHC <sup>7</sup>                                         | .05            | - 608                 | PCB-1016                        | 1.0        | 608                   |
| 2,6-Dinitrotoluene <sup>5</sup>           | 10             | 625                   | Beta-BHC <sup>7</sup>                                          | .05            | 608                   | Toxaphene <sup>7</sup>          | 5.0        | 608                   |
| Di-n-octyl Phthalate⁵                     | 10             | 625                   | Gamma-BHC (Lindane) <sup>7</sup>                               | .05            | 608                   |                                 |            |                       |

<sup>&</sup>lt;sup>1</sup> Based on Contract Required Detection level (CRDL) developed pursuant to 40 CFR Part 300.430(b)(8)

<sup>2</sup> Method 213.2, 239.2, 220.2, 272.2

<sup>3</sup> Dioxin National Strategy

<sup>4</sup> No CRQL(Contract required Quantification Level developed pursuant to 40 CFR Part 300.430(b)(8)) established

<sup>5</sup> CRQL basis, equivalent to ML

<sup>6</sup> ML basis, higher than CRQL
7 CRQL basis, no ML established
8 CRQL basis, higher than ML
9 Based on 3.3 times IDL published in 40 CFR 136, Appendix C

Draft LA0066630; AI 19537; PER20050001

# **OTHER REQUIREMENTS (continued)**

# MONITORING RESULTS<sup>1</sup> FOR THE ANNUAL PRETREATMENT REPORT Jefferson Parish Department of Sewerage/East Bank Wastewater Treatment Plant

| REPORTING YEAR: | , 200 TO | , 200 |
|-----------------|----------|-------|
|                 |          |       |

| METRALS.<br>GWANIDE and | CHAND<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN<br>CHARAIN | 37 | Vinciulal)<br>selse | Actue di centa<br>Bengned |             | Pelly<br>Averete |     | Effi<br>Defeat | hemilea<br>Sempleal |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|---------------------------|-------------|------------------|-----|----------------|---------------------|--|
| BHENOLS                 | i in .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                     |                           |             | Eliten)<br>Unit  |     |                |                     |  |
| Antimony (Total)        | 15.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                     |                           |             |                  | , , |                |                     |  |
| Arsenic (Total)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Beryllium (Total)       | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                     |                           |             |                  |     |                |                     |  |
| Cadmium (Total)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     | ,                         |             |                  |     |                |                     |  |
| Chromium (Total)        | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | _                   |                           |             |                  |     |                |                     |  |
| Copper (Total)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     | <del></del>               |             |                  |     |                |                     |  |
| Lead (Total)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Mercury (Total)         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                     |                           |             |                  |     |                |                     |  |
| Molybden (Total)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Nickel (Total)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Selenium (Total)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Silver (Total)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Thallium (Total)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Zinc (Total)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Cyanide (Total)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| Phenols (Total)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           |             |                  |     |                |                     |  |
| 4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | *****               |                           |             |                  |     |                |                     |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                     |                           | <del></del> |                  |     |                |                     |  |

(larger forms are attached in the appendix, entitled Pretreatment Reports, to be used for submittals)

It is advised that the influent and effluent samples are collected considering flow detention time through each plant. Analytical MQLs should be used so that the data can also be used for Local Limits assessment and NPDES/LPDES application purposes.

<sup>&</sup>lt;sup>2</sup> Maximum Allowable Headworks Loading limitation in µg/l. Only complete for pollutants that have approved Technically Based Local Limits.

Daily average effluent limit in the NPDES/LPDES permit OR the applicable state Water Quality Standard calculated to an equivalent permit effluent limit.

Record the names of any pollutants [40 CFR 122, Appendix D, Table II and/or Table V] detected and the quantity in which they were detected.

PART II
Page 12 of 28
Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# **OTHER REQUIREMENTS (continued)**

# SIGNIFICANTLY NONCOMPLIANT USERS - ENFORCEMENT ACTIONS TAKEN

| , MOTON<br>WALINE |                                       |      | 7. 4.3007      | 1 8 5 1       | به در ماد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3</b> 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PENALTIÉS:  | COMPL               | 6 N -     |                    | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|---------------------------------------|------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KEPOKUS           | FINITE                                | XION | AQ."           | <b>GIXI</b> F | ORIMINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QUHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ©OTIT∃©11∃0 | DATE<br>ISSUED      |           | GURRENT<br>STATUS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      | !              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                | ;             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |           |                    | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | :                                     |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                | ,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :           |                     | •         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     | <br> <br> |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                 |                                       |      |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | , , , , , , , , , , , , , , , , , , , |      | , Merwilen I . |               | AND CAMERY I WAS A SECTION OF THE PROPERTY OF | MINION I THE THE TANK |             | VIOLATION PARALTIES | Macanen   | VISION   PAKALINES | WOLVILLE COMPANDED IN THE PROPERTY OF THE PROP |

(larger forms are attached in the appendix, entitled Pretreatment Reports, to be used for submittals)

# PRETREATMENT PROGRAM STATUS REPORT UPDATED SIGNIFICANT INDUSTRIAL USERS LIST

| INDUSTRIAL | DUSURIAL SIG GANEGORIGAL |               |                     |      |           |                 |      | 0.2       |                               | entangestatus<br>ii |                     |  |
|------------|--------------------------|---------------|---------------------|------|-----------|-----------------|------|-----------|-------------------------------|---------------------|---------------------|--|
| USER       | ©00E                     | DENERMINATION | ANTI VORTION FOREST | USER | INSREGIED | CEMIT<br>CEPEWS | BMIR | COMPLANCE | ANNAT<br>BENI<br>BENI<br>BENI | MONITORING          | TKEUPIKE<br>GALLID. |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      | •         |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |
|            |                          |               |                     |      |           |                 |      |           |                               |                     |                     |  |

(larger forms are attached in the appendix, entitled Pretreatment Reports, to be used for submittals)

#### SECTION D. TOXIC SUBSTANCES

The permittee shall analyze the final effluent for the presence of the following toxic substances. The MQL is intended as action levels. Should a toxic substance exceed the MQL, the permittee shall determine the source of the substance and take whatever measures necessary to secure abatement in order to protect all drinking water sources downstream of the discharge. The LDEQ Regional Office and all drinking water intakes within 5 river miles downstream of this discharge shall be notified upon detection of any toxic substance above the MQL. Records of any actions taken shall be kept for three (3) years and made available upon request by any duly authorized regional inspectors and/or LDEQ Headquarter representatives.

Reporting of the toxic substance analysis shall be in accordance with the discharge monitoring reporting listed on Part II page 2 of 28. A report containing the results of the lab analysis indicating if any toxic substances have exceeded the MQL including a brief summary of any abatement taken at the time, must be submitted to this Office within 20 days of completion of the analysis. The first analysis shall be performed within six months following the effective date of the permit, and every six months thereafter, by a 24-hour composite sample type. Reports must be submitted to the following address:

Department of Environmental Quality

Office of Environmental Compliance
Post Office Box 4312

Baton Rouge, Louisiana 70821-4312

# **TOXIC SUBSTANCES**

| TIOXIC SUESTIANCES (CAS (No.))                        | Required<br>MQL(treW) |     |  |  |  |  |  |  |  |
|-------------------------------------------------------|-----------------------|-----|--|--|--|--|--|--|--|
| VOLATILE ORGANIC CHEMICALS                            |                       |     |  |  |  |  |  |  |  |
| acrolein (107-02-8)                                   | 50                    | 624 |  |  |  |  |  |  |  |
| acrylonitrile (107-13-1)                              | 50                    | 624 |  |  |  |  |  |  |  |
| benzene (71-43-2)                                     | 10                    | 624 |  |  |  |  |  |  |  |
| bromodichloromethane (dichlorobromomethane) (75-27-4) | 10                    | 624 |  |  |  |  |  |  |  |
| bromoform (tribromomethane) (75-25-2)                 | 10                    | 624 |  |  |  |  |  |  |  |
| carbon tetrachloride (56-23-5)                        | 10                    | 624 |  |  |  |  |  |  |  |
| chlorobenzene (108-90-7)                              | 10                    | 624 |  |  |  |  |  |  |  |
| chloroform (trichloromethane)                         | 10                    | 624 |  |  |  |  |  |  |  |
| chloromethane (methyl chloride) (74-87-3)             | 50                    | 624 |  |  |  |  |  |  |  |
| 1,1-dichloroethane (75-34-3)                          | 10                    | 624 |  |  |  |  |  |  |  |
| 1,2-dichloroethane (107-06-2)                         | 10                    | 624 |  |  |  |  |  |  |  |
| 1,1-dichloroethylene (75-35-4)                        | 10                    | 624 |  |  |  |  |  |  |  |
| dichloromethane (methylene chloride) (75-09-2)        | 20                    | 624 |  |  |  |  |  |  |  |
| cis-1,3-dichloropropene                               | 10                    | 624 |  |  |  |  |  |  |  |
| trans-1,3-dichloropropene                             | 10                    | 624 |  |  |  |  |  |  |  |
| ethylbenzene (100-41-4)                               | 10                    | 624 |  |  |  |  |  |  |  |
| para-dichlorobenzene*                                 |                       |     |  |  |  |  |  |  |  |

Page 15 of 28 Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

| TIOXICISUBSITANCES (GAS Not)                  | Required<br>MOL(tro//) | EPATIest<br>Method |
|-----------------------------------------------|------------------------|--------------------|
| 1,1,2,2-tetrachloroethane (79-34-5)           | 10                     | 624                |
| tetrachloroethylene (127-18-4)                | 10                     | 624                |
| toluene (108-88-3)                            | 10                     | 624                |
| 1,1,1-trichloroethane (71-55-6)               | 10                     | 624                |
| 1,1,2-trichloroethane (79-00-5)               | 10                     | 624                |
| trichloroethylene (79-01-6)                   | 10                     | 624                |
| vinyl chloride (chloroethylene) (75-01-4)     | 10                     | 624                |
| ACID EXTRACTABLE ORGANIC CHEMICALS            |                        |                    |
| 2-chlorophenol (95-57-8)                      | 10                     | 625                |
| 3-chlorophenol                                | 10                     | 625                |
| 4-chlorophenol                                | 10                     | 625                |
| 2,4-dichlorophenol (120-83-2)                 | 10                     | 625                |
| 2,3-dichlorophenol                            | 10                     | 625                |
| 2,5-dichlorophenol                            | 10                     | 625                |
| 2,6-dichlorophenol                            | 10                     | 625                |
| 3,4-dichlorophenol                            | 10                     | 625                |
| 2,4-dinitrophenol (51-28-5)                   | 50                     | 625                |
| pentachlorophenol (87-86-5)                   | 50                     | 625                |
| phenol (108-95-2)                             | 10                     | 625                |
| 2,4,6-trichlorophenol (88-06-2)               | 10                     | 625                |
| BASE/NEUTRAL EXTRACTABLE ORGANIC CHEMICALS    |                        |                    |
| anthracene (120-12-7)                         | 10                     | 625                |
| benzidine (92-87-5)                           | 50                     | 625                |
| bis(2-chloroethyl)ether (111-44-4)            | 10                     | 625                |
| bis(2-chloro-1-methylethyl)ether (39638-32-9) | 10                     | 625                |
| bis(2-ethylhexyl)phthalate (117-81-7)         | 10                     | 625                |
| di-n-butyl phthalate (84-74-3)                | 10                     | 625                |
| 1,3-dichlorobenzene (541-73-1)                | 10                     | 625                |
| 1,2-dichlorobenzene (95-50-1)                 | 10                     | 625                |
| 1,4-dichlorobenzene (106-46-7)                | 10                     | 625                |
| 3,3-dichlorobenzidine (91-94-1)               | 50                     | 625                |
| diethyl phthalate (84-66-2)                   | 10                     | 625                |
| dimethyl phthalate (131-11-3)                 | 10                     | 625                |
| 2,4-dinitrotoluene (121-14-2)                 | 10                     | 625                |
| 1,2-diphenylhydrazine (122-66-7)              | 20                     | 625                |
| fluoranthene (206-44-0)                       | 10                     | 625                |

| TOXIC SUBSTANCES (CAS No.)                           | Réquired<br>MQL (µg/l) | EPA Test<br>Method |
|------------------------------------------------------|------------------------|--------------------|
| hexachlorobenzene (118-07-1)                         | 10                     | 625                |
| hexachlorobutadiene (87-68-3)                        | 10                     | 625                |
| hexachlorocyclopentadiene (77-47-4)                  | 10                     | 625                |
| hexachloroethane (67-72-1)                           | 20                     | 625                |
| isophorone (78-59-1)                                 | 10                     | 625                |
| nitrobenzene (98-95-3)                               | 10                     | 625                |
| N-nitrosodimethylamine (62-75-9)                     | 50                     | 625                |
| N-nitrosodiphenylamine (86-30-6)                     | 20                     | 625                |
| PESTICIDES & PCB'S                                   |                        | 1 020              |
| aldrin (309-00-2)                                    | 0.05                   | 608                |
| PCB"s (Total)                                        | 1.0                    | 608                |
| gamma-BHC (Lindane, Hexachlorocyclohexane) (58-89-9) | 0.05                   | 608                |
| chlordane (57-74-9)                                  | 0.2                    | 608                |
| 4,4"DDD (TDE) (72-54-8)                              | 0.1                    | 608                |
| 4,4"DDE (72-55-9)                                    | 0.1                    | 608                |
| 4,4"DDT (50-29-3)                                    | 0.1                    | 608                |
| dieldrin (60-57-1)                                   | 0.1                    | 608                |
| endosulfan I (alpha) (115-29-7)                      | 0.1                    | 608                |
| endosulfan II (beta) (115-29-7)                      | 0.1                    | 608                |
| endrin (72-20-8)                                     | 0.1                    | 608                |
| heptachlor (76-44-8)                                 | 0.05                   | 608                |
| methoxychlor*                                        |                        |                    |
| 2,3,7,8-tetrachlorodibenzo-p-dioxin (1764-01-6)      | **                     | 625                |
| toxaphene (8001-35-2)                                | 5.0                    | 608                |
| 2,4-dichlorophenoxyacetic acid (2,4-D) (94-75-7)     | 10                     | 509B               |
| 2-(2,4,5-trichlorophenoxy)proprionic acid            | 4                      | 509B               |
| METALS                                               |                        |                    |
| antimony (7440-36-0)                                 | 60                     | 200.7              |
| arsenic (7440-38-2)                                  | 10                     | 206.2              |
| barium*                                              | i                      |                    |
| beryllium (7440-41-7)                                | 5                      | 200.7              |
| cadmium (7440-43-9)                                  | 1                      | 213.2              |
| chromium III (16065-83-1)                            | 10                     | 200.7              |
| chromium VI (7440-47-3)                              | 10                     | 200.7              |
| copper (7550-50-8)                                   | 10                     | 220.2              |
| lead (7439-92-1)                                     | 5                      | 239.2              |

| TIONIES DIANTEEUS DIXOIL | Regulred<br>MQL(pg/l) | EPATIEST<br>Method |
|--------------------------|-----------------------|--------------------|
| flouride*                |                       |                    |
| mercury (7439-97-6)      | 0.2                   | 245.1              |
| nickel (7440-02-0)       | 40                    | 200.7              |
| nitrate (as N)*          |                       |                    |
| selenium (7782-49-2)     | 5                     | 270.2              |
| silver (7440-22-4)       | 2                     | 272.2              |
| thallium (7440-28-0)     | 10                    | 279.2              |
| zinc (7440-66-6)         | 20                    | 200.7              |
| MISCELLANEOUS            |                       |                    |
| cyanide                  | 20                    | 335.2              |
| total phenols            | 5                     | 420.1              |

- \* In addition to the effluent lab result for this pollutant, also report MQL and Test Method used.
- \*\* Method 625 is a nonquantitative screen that is used to ascertain a positive or negative result. With proper QA/QC techniques, a positive result can be expected at a level above 1 ppm. If this test yields a positive response, then method 613 would be appropriate to establish the quantitative value. Method 613 requires use of the dioxin standard which is dangerous and should not be used unnecessarily.

Draft LA0066630; Al 19537; PER20050001

# OTHER REQUIREMENTS (continued)

#### SECTION E. STORM WATER DISCHARGE REQUIREMENTS

- A. This section **applies** to all storm water discharges from the facility, either through permitted outfalls or through outfalls which are not listed in the permit or as sheet flow.
- B. Any runoff leaving the developed areas of the facility, other than the permitted outfall(s), exceeding 50 mg/L TOC, 15 mg/L Oil and Grease, or having a pH less than 6.0 or greater than 9.0 standard units (SU) shall be a violation of this permit. Any discharge in excess of these limitations, which is attributable to offsite contamination shall not be considered a violation of this permit. A visual inspection of the facility shall be conducted and a report made annually as described in Paragraph D.4 below.
- C. The permittee shall prepare, implement, and maintain a Storm Water Pollution Prevention Plan (SWP3) within six (6) months of the effective date of the final permit. The terms and conditions of the SWP3 shall be an enforceable Part of the permit. EPA document 833-R-92-002 (Storm Water Management for Industrial Activities) may be used as a guidance and may be obtained by writing to the U.S. Environmental Protection Agency, Office of Water Resources (RC-4100), 401 M Street, S. W., Washington D.C. 20460 or by calling (202) 260-7786.
- D. The following conditions are applicable to all facilities and shall be included in the SWP3 for the facility.
  - The permittee shall conduct an annual inspection of the facility site to identify areas contributing to the storm water discharge from developed areas of the facility and evaluate whether measures to reduce pollutant loadings identified in the SWP3 are adequate and have been properly implemented in accordance with the terms of the permit or whether additional control measures are needed.
  - 2. The permittee shall develop a site map, which includes all areas where storm water may contact potential pollutants or substances, which can cause pollution. Any location where reportable quantities leaks or spills have previously occurred are to be documented in the SWP3. The SWP3 shall contain a description of the potential pollutant sources, including, the type and quantity of material present and what action has been taken to assure storm water precipitation will not directly contact the substances and result in contaminated runoff.
  - 3. Where experience indicates a reasonable potential for equipment failure (e.g. a tank overflow or leakage), natural condition of (e.g. precipitation), or other circumstances, which result in significant amounts of pollutants reaching surface waters, the SWP3 should include a prediction of the direction, rate of flow and total quantity of pollutants, which could be discharged from the facility as a result of each condition or circumstance.
  - 4. The permittee shall maintain for a period of three years a record summarizing the results of the inspection and a certification that the facility is in compliance with the SWP3 and the permit, and identifying any incidents of noncompliance. The summary report should contain, at a minimum, the date and time of inspection, name of inspector(s), conditions found, and changes to be made to the SWP3.
  - 5. The summary report and the following **certification** shall be signed in accordance with LAC 33:IX.2333. The summary report is to be attached to the SWP3 and provided to the Department upon request.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Signatory requirements for the certification may be found in Part III, Section D.10 of this permit.

- 6. The permittee shall make available to the Department, upon request, a copy of the SWP3 and any supporting documentation.
- E. The following shall be included in the SWP3, if applicable.
  - 1. The permittee shall utilize all reasonable methods to minimize any adverse impact on the drainage system including, but not limited to:
    - a. maintaining adequate roads and driveway surfaces;
    - b. removing debris and accumulated solids from the drainage system; and
    - c. cleaning up immediately any spill by sweeping absorbent pads, or other appropriate methods.
  - 2. All spilled product and other spilled wastes shall be immediately cleaned up and disposed of according to all applicable regulations, Spill Prevention and Control (SPC) Plans or Spill Prevention Control and Countermeasures (SPCC) Plans. Use of detergents, emulsifiers, or dispersants to clean up spilled product is prohibited, except where necessary to comply with State of Federal safety regulations (i.e., requirement for non-slippery work surface). In all such cases, initial cleanup shall be done by physical removal and chemical usage shall be minimized.
  - All waste fuel, lubricants, coolants, solvents, or other fluids used in the repair or maintenance of vehicles or equipment shall be recycled or contained for proper disposal. Spills of these materials are to be cleaned up by dry means whenever possible.
  - 4. All equipment, parts, dumpsters, trash bins, petroleum products, chemical solvents, detergents, or other materials exposed to storm water shall be maintained in a manner which prevents contamination of storm water by pollutants.
  - 5. **All storage tank installations** (with a capacity greater than 660 gallons for an individual container, or 1,320 gallons for two or more containers in aggregate within a common storage area) shall be constructed so that a secondary means of containment is provided for the entire contents of the largest tank plus sufficient freeboard to allow for precipitation. Diked areas should be sufficiently impervious to contain spills.

- 6. All diked areas surrounding storage tanks or storm water collection basins shall be free of residual oil or other contaminants so as to prevent the accidental discharge of these materials in the event of flooding, dike failure, or improper draining of the diked area. All drains from diked areas shall be equipped with valves, which shall be kept in the closed condition except during periods of supervised discharge.
- 7. **All check valves, tanks, drains, or other potential sources of pollutant releases** shall be inspected and maintained on a regular basis to assure their proper operation and to prevent the discharge of pollutants.
- 8. The permittee shall amend the SWP3 whenever there is a change in the facility or change in the operation of the facility, which materially increases the potential for the ancillary activities to result in a discharge of significant amounts of pollutants.
- 9. If the SWP3 proves to be ineffective in achieving the general objectives of preventing the release of significant amounts of pollutants to waters of the state, then the specific objectives and requirements of the SWP3 shall be subject to modification to incorporate revised SWP3 requirements.

# F. Facility specific SWP3 Conditions:

- Site Map. The locations of the following areas, where such areas are exposed to precipitation, shall also be included on the site map: grit, screenings and other solids handling, storage, or disposal areas; sludge drying beds; dried sludge piles; compost piles; septage and/or hauled waste receiving station; and storage areas for process chemicals, petroleum products, solvents, fertilizers, herbicides, and pesticides.
- 2. **Employee Training.** At a minimum, must address the following areas when applicable to a facility: petroleum product management; process chemical management; spill prevention and controls; fueling procedures; general good housekeeping practices; proper procedures for using fertilizer, herbicides, and pesticides.
- Summary of Potential Pollutant Sources. The summary of potential pollutant sources must also list the
  activities and pollutants from the following areas: grit, screenings and other solids handling, storage or disposal
  areas; sludge drying beds; dried sludge piles; compost piles; septage and/or hauled waste receiving station; and
  access roads/rail lines.
- 4. **Good Housekeeping Measures.** As part of your good housekeeping program, consider providing protected materials storage areas for pesticides, herbicides, fertilizer, and other significant materials.
- 5. Preventative Maintenance Program. This program must also maintain: 1) containers used for outdoor chemical and significant materials storage to prevent leaking or rupture; 2) all elements of leachate collection and treatment systems to prevent commingling of leachate with storm water; 3) the integrity and effectiveness of any intermediate or final cover (including repairing the cover as necessary to minimize the effects of settlement, sinking, and erosion).

PART II Page 21 of 28 Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

- 6. Description of BMPs to be Used. In addition to the other BMPs considered, the facility must consider routing storm water into treatment works, or covering exposed materials from the following exposed areas: grit, screenings and other solids handling, storage or disposal areas; sludge drying beds; dried sludge piles; compost piles; septage and/or hauled waste receiving station.
- 7. **Inspection of Active Sites.** The following areas must be included in all monthly inspections: access roads/rail lines; grit, screenings and other solids handling, storage or disposal areas; sludge drying beds, dried sludge piles; compost piles; septage and/or hauled waste receiving station areas.
- 8. Sediment and Erosion Control Plan. Provide temporary stabilization (e.g., consider temporary seeding, mulching, and placing geo textiles on the inactive portions of stockpiles and/or site): for materials stockpiled for daily, intermediate and final cover; inactive areas of the landfill or open dump; any landfill or open dump area that has received a final cover until vegetation has established itself; and where waste application has been completed at land application sites but final vegetation has not yet been established.
- 9. Wastewater and Wash water Requirements. If wash waters are handled in another manner other than the treatment works, the disposal method must be described and all pertinent documentation must be attached to the plan.

Draft LA0066630; Al 19537; PER20050001

# **OTHER REQUIREMENTS (continued)**

# SECTION F. WHOLE EFFLUENT TOXICITY TESTING (48 HOUR ACUTE NOEC: FRESHWATER)

# 1. SCOPE AND METHODOLOGY

a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

APPLICABLE TO OUTFALL(S):

001

REPORTED ON DMR AS OUTFALL:

**TX10** 

**CRITICAL DILUTION:** 

1.08%

**EFFLUENT DILUTION SERIES:** 

0.45%, 0.61%, 0.81%, 1.08%, 1.4%

COMPOSITE SAMPLE TYPE:

Defined at PART I

**TEST SPECIES/METHODS:** 

40 CFR Part 136

**Daphnia pulex** acute static renewal 48-hour definitive toxicity test using EPA-821-R-02-012, or the latest update thereof. A minimum of five (5) replicates with ten (10) organisms per replicate must be used in the control and in each effluent dilution of this test.

**Pimephales promelas** (Fathead minnow) acute static renewal 48-hour definitive toxicity test using EPA-821-R-02-012, or the latest update thereof. A minimum of five (5) replicates with (10) organisms per replicate must be used in the control and in each effluent dilution of this test.

- b. The **NOEC** (No Observed Effect Concentration) is defined as the greatest effluent dilution at and below which lethality that is statistically different from the control (0% effluent) at the 95% confidence level does not occur.
- c. This **permit may be reopened** to require whole effluent toxicity limits, chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity.
- d. Test failure is defined as a demonstration of statistically significant sub-lethal or lethal effects to a test species at or below the effluent critical dilution.

# 2. PERSISTENT LETHALITY

The requirements of this subsection apply only when a toxicity test demonstrates significant lethal effects at or below the critical dilution. Significant lethal effects are herein defined as a statistically significant difference at the 95% confidence level between the survival of the appropriate test organism in a specified effluent dilution and the control (0% effluent).

a. The permittee shall conduct a total of two (2) additional tests for any species that demonstrates significant lethal effects at or below the critical dilution. The two additional tests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two additional tests in lieu of routine toxicity testing, unless the specified testing frequency for the species demonstrating significant lethal effects is monthly. The full report shall be prepared for each test required by this section in accordance with procedures outlined in item 4 of this section and submitted with the period discharge monitoring report (DMR) to the permitting authority for review.

Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# **OTHER REQUIREMENTS (continued)**

- b. If one or both of the two additional tests demonstrates significant lethal effects at or below the critical dilution, the permittee shall **initiate Toxicity Reduction Evaluation (TRE) requirements** as specified in item 5 of this section. The permittee shall notify the Department of Environmental Quality, Office of Environmental Services in writing within 5 days of the failure of any retest, and the TRE initiation date will be the test completion date of the first failed retest. A TRE may be also required due to a demonstration of intermittent lethal effects at or below the critical dilution, or for failure to perform the required retests.
- c. If one or both of the two additional tests demonstrates significant lethal effects at or below the critical dilution, the permittee shall henceforth increase the frequency of testing for this species to once per quarter for the life of the permit.
- d. The provisions of item 2.a are suspended upon submittal of the TRE Action Plan.

# 3. REQUIRED TOXICITY TESTING CONDITIONS

#### a. Test Acceptance

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- i. Each toxicity test control (0% effluent) must have a survival equal to or greater than 90%.
- The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for the Daphnia pulex survival test and Fathead minnow survival test.
- iii. The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, <u>unless</u> significant lethal effects are exhibited for the *Daphnia pulex* survival test and Fathead minnow survival test.

Test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40%. A repeat test shall be conducted within the required reporting period of any test determined to be invalid.

# b. Statistical Interpretation

For the *Daphnia pulex* survival test and the Fathead minnow survival test, the statistical analysis used to determine if there is a statistically significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA-821-R-02-012, or the most recent update thereof.

If the conditions of Test Acceptability are met in Item 3.a above and the percent survival of the test organism is equal to or greater than 90% in the critical dilution concentration and all other concentrations, the test shall be considered to be a passing test, and the permittee shall report an NOEC of not less than the critical dilution for the DMR reporting requirements found in item 4 below.

## c. Dilution Water

 Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness and alkalinity to the closest downstream perennial water for;

Draft LA0066630; Al 19537; PER20050001

# OTHER REQUIREMENTS (continued)

- A. toxicity tests conducted on effluent discharges to receiving water classified as intermittent streams; and
- toxicity tests conducted on effluent discharges where no receiving water is available due to zero flow conditions.
- ii. If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of item 3.a), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
  - A. a synthetic dilution water control which fulfills the test acceptance requirements of item 3.a was run concurrently with the receiving water control;
  - B. the test indicating receiving water toxicity has been carried out to completion (i.e., 48 hours);
  - C. the permittee includes all test results indicating receiving water toxicity with the full report and information required by item 4 below; and
  - D. the synthetic dilution water shall have a pH, hardness and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.

## d. Samples and Composites

- i. The permittee shall collect two flow-weighted 24-hour composite samples from the outfall(s) listed at item 1.a above. A 24-hour composite sample consists of a minimum of 4 effluent portions collected at equal time intervals representative of a 24-hour operating day and combined proportional to flow or a sample continuously collected proportional to flow over a 24-hour operating day.
- ii. The permittee shall collect a second 24-hour composite sample for use during the 24-hour renewal of each dilution concentration for both tests. The permittee must collect the 24-hour composite samples so that the maximum holding time for any effluent sample must not exceed 36 hours. The permittee must have initiated the toxicity test within 36 hours after the collection of the last portion of the first 24-hour composite sample. Samples shall be chilled to 0-6 degrees Centigrade during collection, shipping and/or storage.
- iii. The permittee must collect the 24-hour composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on an intermittent basis.
- iv. If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report required in item 4 of this section.

Draft LA0066630; AI 19537; PER20050001

# OTHER REQUIREMENTS (continued)

#### 4. REPORTING

a. A valid test must be submitted during each reporting period. The permittee shall prepare a full report of the results of all tests conducted pursuant to this section in accordance with the Report Preparation Section of EPA-821-R-02-012, or the most current publication, for every valid or invalid toxicity test initiated, whether carried to completion or not. The permittee shall retain each full report pursuant to the provisions of Part III.C of this permit. For any test which fails, is considered invalid, or which is terminated early for any reason, the full report must be submitted for agency review. The permittee shall submit the first full report to the following address:

Louisiana Department of Environmental Quality
Office of Environmental Compliance
Permit Compliance Unit
P. O. Box 4312
Baton Rouge, Louisiana 70821-4312

- b. The permittee shall submit the results of each valid toxicity test on the subsequent monthly DMR for that reporting period in accordance with Part III.D of this permit. Submit retest information clearly marked as such with the following month's DMR. Only results of valid tests are to be reported on the DMR. The permittee shall submit the Table I summary sheet (attached in the appendix, entitled Biomonitoring Summary Sheets) with each valid test.
  - i. Pimephales promelas (Fathead minnow)
    - A. If the **No Observed Effect Concentration (NOEC) for survival** is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. **TEM6C**.
    - B. Report the NOEC value for survival, Parameter No. TOM6C.
    - C. Report the highest (critical dilution or control) Coefficient of Variation Parameter No. TQM6C.

#### ii. Daphnia pulex

- A. If the No Observed Effect Concentration (NOEC) for survival is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TEM3D.
- B. Report the NOEC value for survival, Parameter No. TOM3D.
- C. Report the highest (critical dilution or control) Coefficient of Variation Parameter No. TQM3D.
- iii. The permittee shall **report the following results for all <u>VALID</u> toxicity <u>retests</u> on the DMR for that reporting period.** 
  - A. Retest #1 (STORET 22415): If the <u>first</u> monthly retest following failure of a routine test for either test species results in an NOEC for survival less than the critical dilution, report a "1"; otherwise, report a "0."
  - B. Retest #2 (STORET 22416): If the <u>second</u> monthly retest following failure of a routine test for either test species results in an NOEC for survival less than the critical dilution, report a "1"; otherwise, report a "0."
  - If, for any reason, a retest cannot be performed during the reporting period in which the triggering routine test failure is experienced, the permittee shall report it on the following reporting period's DMR, and the comments section of both DMRs shall be annotated to that effect. If retesting is not required during a given reporting period, the permittee shall leave these DMR fields blank.

Draft <u>LA0066630</u>; <u>Al 19537</u>; <u>PER20050001</u>

# **OTHER REQUIREMENTS (continued)**

The permittee shall submit the toxicity testing information contained in Table 1 of this permit with the DMR subsequent to each and every toxicity test reporting period. The DMR and the summary table should be sent to the address indicated in 4.a. The permittee is not required to send the first complete report nor summary tables to EPA.

# **Monitoring Frequency Reduction**

- a. The permittee may apply for a testing frequency reduction upon the successful completion of the first four consecutive quarters of testing of one or both test species, with no lethal or sub-lethal effects demonstrated at or below the critical dilution. If granted, the monitoring frequency for that test species may be reduced to not less than once per year for the less sensitive species (usually the Fathead minor) and not less than twice per year for the more sensitive species (usually the Daphnia pulex).
- b. CERTIFICATION The permittee must certify in writing that no test failures have occurred and that all tests meet all test acceptability criteria in item 3.a above. In addition, the permittee must provide a list with each test performed including test initiation date, species, NOECs for lethal and sub-lethal effects, and the maximum coefficient of variation for the controls. Upon review and acceptance of this information the agency will issue a letter of confirmation of the monitoring frequency reduction. A copy of the letter will be forwarded to the agency's Permit Compliance Unit to update the permit reporting requirements.
- c. SURVIVAL FAILURES If any test fails the survival endpoint at any time during the life of this permit, two monthly retests are required and the monitoring frequency for the affected test species shall be increased to once per quarter until the permit is re-issued. Monthly retesting is not required if the permittee is performing a TRE.
- d. This monitoring frequency reduction applies only until the expiration date of this permit, at which time the monitoring frequency for both test species reverts to once per quarter until the permit is reissued.

# 5. TOXICITY REDUCTION EVALUATION (TRE)

- a. Within ninety (90) days of confirming lethality in any retest, the permittee shall submit a Toxicity Reduction Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The TRE Action Plan shall lead to the successful elimination of effluent toxicity at the critical dilution and include the following:
  - i. Specific Activities. The plan shall detail the specific approach the permittee intends to utilize in conducting the TRE. The approach may include toxicity characterizations, identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures (EPA-600/6-91/003) and Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I (EPA-600/6-91/005), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and follow the methods specified in the documents Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity (EPA/600/R-92/081), as appropriate;

PART II Page 27 of 28

Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# OTHER REQUIREMENTS (continued)

The documents referenced above may be obtained through the **National Technical Information Service (NTIS)** by phone at (703) 487-4650, or by writing:

United States Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, Va. 22161

ii. Sampling Plan (e.g., locations, methods, holding times, chain of custody, preservation, etc.). The effluent sample volume collected for all tests shall be adequate to perform the toxicity test, toxicity characterization, identification and confirmation procedures, and conduct chemical specific analyses when a probable toxicant has been identified:

Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical specific analyses for the identified and/or suspected pollutant(s) and/or source(s) of effluent toxicity. Where lethality was demonstrated within 24 hours of test initiation, each 24 hour composite sample shall be analyzed independently. Otherwise the permittee may substitute a composite sample, comprised of equal portions of the individual 24 hour composite samples, for the chemical specific analysis;

- iii. Quality Assurance Plan (e.g., QA/QC implementation, corrective actions, etc.); and
- iv. Project Organization (e.g., project staff, project manager, consulting services, etc.).
- b. The permittee shall initiate the **TRE Action Plan** within thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achieve the required toxicity reduction.
- c. The permittee shall **submit a quarterly TRE Activities Report**, with the Discharge Monitoring Report in the months of January, April, July and October, containing information on toxicity reduction evaluation activities including:
  - i. any data and/or substantiating documentation which identifies the pollutant(s) and/or source(s) of effluent toxicity;
  - ii. any studies/evaluations and results on the treatability of the facility's effluent toxicity; and
  - iii. any data which identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution.

The TRE Activities Report shall be submitted to the following addresses:

Louisiana Department of Environmental Quality
Office of Environmental Compliance
Permit Compliance Unit
P.O. Box 4312
Baton Rouge, Louisiana 70821-4312

United States Environmental Protection Agency, Region 6
Water Enforcement Branch
1445 Ross Avenue
Dallas, Texas 75202

PART II
Page 28 of 28
Draft <u>LA0066630</u>; <u>AI 19537</u>; <u>PER20050001</u>

# OTHER REQUIREMENTS (continued)

d. The permittee shall submit a Final Report on Toxicity Reduction Evaluation Activities no later than twenty-eight (28) months from confirming lethality in the retests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in reduction of effluent toxicity to no significant lethality at the critical dilution. The report will also provide a specific corrective action schedule for implementing the selected control mechanism.

A copy of the Final Report on Toxicity Reduction Evaluation Activities shall also be submitted to the above addresses.

e. Quarterly testing during the TRE is a minimum monitoring requirement. EPA recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional screening tests be performed to capture toxic samples for identification of toxicants. Failure to identify the specific chemical compound causing toxicity test failure will normally result in a permit limit for whole effluent toxicity limits per federal regulations at 40 CFR 122.44(d)(1)(v).

# TABLE 1 SUMMARY SHEET Daphnia pulex ACUTE SURVIVAL TEST RESULTS

| PERMITTEE:                                              |                  |               |             |                     |               |              |
|---------------------------------------------------------|------------------|---------------|-------------|---------------------|---------------|--------------|
| FACILITY:                                               |                  |               |             |                     |               |              |
| FACILITY:<br>LPDES PERMIT NUMBE                         | R: LA            |               | AGENCY      | INTEREST N          | IUMBER: AI    |              |
| OUTFALL IDENTIFICATI                                    | ON:              |               |             |                     |               |              |
| OUTFALL SAMPLE IS F                                     |                  | GLE DISCHA    | RGE 🗆       | MULTIPLE D          | ISCHARGE      |              |
| BIOMONITORING LABO                                      |                  |               |             |                     |               | <del></del>  |
| DILUTION WATER USE                                      | ): 🗆 RECEIV      | ING WATER     |             | WATER               |               |              |
| CRITICAL DILUTION                                       | % DA             | TE TEST IS II | NITIATED: _ | <del></del>         | <del></del>   |              |
| 1. LOW-FLOW LETHA                                       | LITY:            |               |             |                     |               |              |
| Is the mean surviva flow or critical diluti             | _                | -             | s(p=0.05)t  | than the con        | trol survival | for the low  |
|                                                         |                  | TION SERIES   | -           |                     |               |              |
| TIME OF REP                                             | 0%               |               |             |                     | B             |              |
|                                                         |                  |               |             |                     |               |              |
| 24H0UR                                                  |                  |               |             |                     |               | :            |
| ZZZANOWIX                                               |                  |               |             |                     |               |              |
|                                                         |                  |               |             |                     |               |              |
| 24 in                                                   |                  |               |             |                     |               |              |
|                                                         |                  |               |             |                     |               |              |
| 43HOVR                                                  |                  |               |             |                     |               |              |
|                                                         |                  |               |             |                     |               |              |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   |                  |               |             |                     |               | <u></u>      |
| MEAN                                                    | en tr            |               |             |                     |               | į            |
| 2. Are the test results to If X NO ( test invalid )     |                  |               |             | S 🗆 NO              |               | <u> </u>     |
| 3. Is this a retest of a pr<br>Is this a retest of a pr |                  |               |             | S D NO              |               |              |
| 4. Enter the percent eff Daphnia pulex:                 | fluent correspon | ding to each  | NOEC (No    | Observed El         | fect Concen   | tration) for |
| vapinila puies.                                         | NOEC% I          | EFFLUENT      |             | LC <sub>50</sub> 48 | % EFFLU       | ENT          |

# TABLE 1 SUMMARY SHEET Pimephales promelas ACUTE SURVIVAL TEST RESULTS

| PERMITTEE:                                                                                                                                                                                           |                                                                      |     |         |  |  |            |          |               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|---------|--|--|------------|----------|---------------|--|
| FACILITY:AGENCY INTEREST NUMBER: AI                                                                                                                                                                  |                                                                      |     |         |  |  |            |          |               |  |
| OUTFALL IDENTIFICATION:                                                                                                                                                                              |                                                                      |     |         |  |  |            |          |               |  |
| OUTFALL SAMPLE IS FROM:   SINGLE DISCHARGE  MULTIPLE DISCHARGE  BIOMONITORING LABORATORY:                                                                                                            |                                                                      |     |         |  |  |            |          |               |  |
| BIOMONITORING LABORATORY:                                                                                                                                                                            |                                                                      |     |         |  |  |            |          |               |  |
| CRITICAL DILUTION% DATE TEST IS INITIATED:                                                                                                                                                           |                                                                      |     |         |  |  |            |          |               |  |
| <ol> <li>LOW-FLOW LETHALITY:         Is the mean survival at 7 days significantly less ( p=0.05 ) than the control survival at the low-flow or critical dilution?         □ YES □ NO     </li> </ol> |                                                                      |     |         |  |  |            |          |               |  |
| DILUTION SERIES RESULTS                                                                                                                                                                              |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | TIME OF READING                                                      | REP | .0%     |  |  |            |          |               |  |
|                                                                                                                                                                                                      |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | 7 10 37                                                              |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | 24-HOUR                                                              |     |         |  |  |            |          |               |  |
| i                                                                                                                                                                                                    |                                                                      | ,   |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | , , , , , ,                                                          |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | 494007                                                               |     |         |  |  | -          |          |               |  |
|                                                                                                                                                                                                      | CONTRACTOR S                                                         |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | MEAN                                                                 | 4   |         |  |  |            |          |               |  |
| 2. LOW-FLOW NON-LETHALITY:                                                                                                                                                                           |                                                                      |     |         |  |  |            |          |               |  |
| Is the mean dry weight (growth) at 7 days significantly less ( p=0.05 ) than the control's dry weight (growth) for the low-flow or critical dilution? $\Box$ YES $\Box$ NO                           |                                                                      |     |         |  |  |            |          |               |  |
| 3. Are the test results to be considered valid? ☐ YES ☐ NO                                                                                                                                           |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      | If $\underline{X}$ NO ( test invalid ), what reasons for invalidity? |     |         |  |  |            |          |               |  |
| 4. Is this a retest of a previous invalid test?                                                                                                                                                      |                                                                      |     |         |  |  | □ YES □ NO |          |               |  |
| Is this a retest of a previous test failure?   YES  NO  Figure 1                                                                                                                                     |                                                                      |     |         |  |  |            |          | itration) for |  |
| 5. Enter percent effluent corresponding to each NOEC (No Observed Effect Concentration) for Pimephales:  NOEC% EFFLUENT LC5048% EFFLUENT                                                             |                                                                      |     |         |  |  |            |          |               |  |
|                                                                                                                                                                                                      |                                                                      | ive | /LV/0 t |  |  | FO2040     | /0 EFFEU | ∟. <b>∀</b> I |  |

## PART III STANDARD CONDITIONS FOR LPDES PERMITS

#### SECTION A. GENERAL CONDITIONS

#### 1. Introduction

In accordance with the provisions of LAC 33:1X.2701, et. seq., this permit incorporates either expressly or by reference ALL conditions and requirements applicable to Louisiana Pollutant Discharge Elimination System Permits (LPDES) set forth in the Louisiana Environmental Quality Act (LEQA), as amended, as well as ALL applicable regulations.

#### 2. Duty to Comply

The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act (CWA) and the Louisiana Environmental Quality Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

#### 3. Penalties for Violation of Permit Conditions

- a. LA. R. S. 30:2025 provides for civil penalties for violations of these regulations and the Louisiana Environmental Quality Act. LA. R. S. 30:2076.2 provides for criminal penalties for violation of any provisions of the LPDES or any order or any permit condition or limitation issued under or implementing any provisions of the LPDES program. (See Section E. Penalties for Violation of Permit Conditions for additional details).
- Any person may be assessed an administrative penalty by the State Administrative Authority under LA.
   R. S. 30:2025 for violating a permit condition or limitation implementing any of the requirements of the LPDES program in a permit issued under the regulations or the Louisiana Environmental Quality Act.

#### 4. Toxic Pollutants

- a. Other effluent limitations and standards under Sections 301, 302, 303, 307, 318, and 405 of the Clean Water Act. If any applicable toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under Section 307(a) of the Clean Water Act for a toxic pollutant and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, the state administrative authority shall institute proceedings under these regulations to modify or revoke and reissue the permit to conform to the toxic effluent standard or prohibition.
- b. The permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under Section 405(d) of the Clean Water Act within the time provided in the regulations that establish these standards or prohibitions, or standards for sewage sludge use or disposal, even if the permit has not yet been modified to incorporate the requirement.

#### 5. Duty to Reapply

- a. Individual Permits. If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. The new application shall be submitted at least 180 days before the expiration date of the existing permit, unless permission for a later date has been granted by the state administrative authority. (The state administrative authority shall not grant permission for applications to be submitted later than the expiration date of the existing permit.) Continuation of expiring permits shall be governed by regulations promulgated at LAC 33:IX.2321 and any subsequent amendments.
- b. General Permits. General permits expire five years after the effective date. Unless otherwise specified in the general permit, or notified by the Secretary or his designee, a permittee must submit an NOI/application for the permitted activity.

#### 6. Permit Action

This permit may be modified, revoked and reissued, or terminated for cause in accordance with LAC 33:IX.2903, 2905, 2907, 3105 and 6509. The causes may include, but are not limited to, the following:

- a. Noncompliance by the permittee with any condition of the permit;
- The permittee's failure in the application or during the permit issuance process to disclose fully all relevant acts, or the permittee's misrepresentation of any relevant facts at any time;
- c. A determination that the permitted activity endangers human health or the environment and can only be regulated to acceptable levels by permit modification or termination;
- d. A change in any condition that requires either a temporary or a permanent reduction or elimination of any discharge; or
- e. Failure to pay applicable fees under the provisions of LAC 33: IX. Chapter 13;
- f. Change of ownership or operational control;

The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition.

#### 7. Property Rights

This permit does not convey any property rights of any sort, or any exclusive privilege.

## 8. Duty to Provide Information

The permittee shall furnish to the state administrative authority, within a reasonable time, any information which the state administrative authority may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the state administrative authority, upon request, copies of records required to be kept by this permit.

## 9. Criminal and Civil Liability

Except as provided in permit conditions on "Bypassing" and "Upsets", nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance. Any false or materially misleading representation or concealment of information required to be reported by the provisions of the permit, the Act, or applicable regulations, which avoids or effectively defeats the regulatory purpose of the Permit may subject the Permittee to criminal enforcement pursuant to La. R.S. 30:2025.

## 10. Oil and Hazardous Substance Liability

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject under Section 311 of the Clean Water Act.

#### 11. State Laws

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable State law or regulation under authority preserved by Section 510 of the Clean Water Act.

## 12. Severability

If any provision of these rules and regulations, or the application thereof, is held to be invalid, the remaining provisions of these rules and regulations shall not be affected, so long as they can be given effect without the invalid provision. To this end, the provisions of these rules and regulations are declared to be severable.

#### 13. Dilution

A permittee shall not achieve any effluent concentration by dilution unless specifically authorized in the permit. A permittee shall not increase the use of process water or cooling water or otherwise attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve permit limitations or water quality.

## SECTION B. PROPER OPERATION AND MAINTENANCE

#### 1. Need to Halt or Reduce not a Defense

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

#### 2. Duty to Mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. The permittee shall also take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with the permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

## 3. Proper Operation and Maintenance

- a. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.
- b. The permittee shall provide an adequate operating staff which is duly qualified to carry out operation, maintenance and other functions necessary to ensure compliance with the conditions of this permit.

## 4. Bypass of Treatment Facilities

- a. <u>Bypass</u>. The intentional diversion of waste streams from any portion of a treatment facility.
- b. <u>Bypass not exceeding limitations</u>. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of Section B.4.c. and 4.d of these standard conditions.

#### c. Notice

- (1) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Office of Environmental Services, Water and Waste Permits Division, if possible at least ten days before the date of the bypass.
- (2) <u>Unanticipated bypass</u>. The permittee shall submit notice of an unanticipated bypass as required in LAC 33:IX.2701.L.6, (24-hour notice) and Section D.6.e. of these standard conditions.

## d. Prohibition of bypass

- (1) Bypass is prohibited, and the state administrative authority may take enforcement action against a permittee for bypass, unless:
  - (a) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;

- (b) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and,
- (c) The permittee submitted notices as required by Section B.4.c of these standard conditions.
- (2) The state administrative authority may approve an anticipated bypass after considering its adverse effects, if the state administrative authority determines that it will meet the three conditions listed in Section B.4.d(1) of these standard conditions.

## 5. Upset Conditions

- a. <u>Upset</u>. An exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- b. <u>Effect of an upset</u>. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology-based permit effluent limitations if the requirements of Section B.5.c. are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- c. <u>Conditions necessary for a demonstration of upset</u>. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
  - (1) An upset occurred and that the permittee can identify the cause(s) of the upset;
  - (2) The permitted facility was at the time being properly operated; and
  - (3) The permittee submitted notice of the upset as required by LAC 33:IX.2701.L.6.b.ii. and Section D.6.e.(2) of these standard conditions; and
  - (4) The permittee complied with any remedial measures required by Section B.2 of these standard conditions.
- d. <u>Burden of proof</u>. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

## 6. Removed Substances

Solids, sewage sludges, filter backwash, or other pollutants removed in the course of treatment or wastewater control shall be properly disposed of in a manner such as to prevent any pollutant from such materials from entering waters of the state and in accordance with environmental regulations.

## 7. Percent Removal

For publicly owned treatment works, the 30-day average percent removal for Biochemical Oxygen Demand and Total Suspended Solids shall not be less than 85 percent in accordance with LAC 33:IX.5905.A.3. and B.3.

## SECTION C. MONITORING AND RECORDS

#### 1. Inspection and Entry

The permittee shall allow the state administrative authority, or an authorized representative (including an authorized contractor acting as a representative of the Administrator), upon the presentation of credentials and other documents as may be required by the law to:

a. Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit.

Enter upon the permittee's premises where a discharge source is or might be located or in which monitoring equipment or records required by a permit are kept for inspection or sampling purposes. Most inspections will be unannounced and should be allowed to begin immediately, but in no case shall begin more than thirty (30) minutes after the time the inspector presents his/her credentials and announces the purpose(s) of the inspection. Delay in excess of thirty (30) minutes shall constitute a violation of this permit. However, additional time can be granted if the inspector or the Administrative Authority determines that the circumstances warrant such action; and

- b. Have access to and copy, at reasonable times, any records that the department or its authorized representative determines are necessary for the enforcement of this permit. For records maintained in either a central or private office that is open only during normal office hours and is closed at the time of inspection, the records shall be made available as soon as the office is open, but in no case later than the close of business the next working day;
- c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
- d. Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act or the Louisiana Environmental Quality Act, any substances or parameters at any location.

## e. Sample Collection

- (1) When the inspector announces that samples will be collected, the permittee will be given an additional thirty (30) minutes to prepare containers in order to collect duplicates. If the permittee cannot obtain and prepare sample containers within this time, he is considered to have waived his right to collect duplicate samples and the sampling will proceed immediately. Further delay on the part of the permittee in allowing initiation of the sampling will constitute a violation of this permit.
- (2) At the discretion of the administrative authority, sample collection shall proceed immediately (without the additional 30 minutes described in Section C.1.a. above) and the inspector shall supply the permittee with a duplicate sample.
- f. It shall be the responsibility of the permittee to ensure that a facility representative familiar with provisions of its wastewater discharge permit, including any other conditions or limitations, be available either by phone or in person at the facility during all hours of operation. The absence of such personnel on-site who are familiar with the permit shall not be grounds for delaying the initiation of an inspection except in situations as described in Section C.1.b. of these standard conditions. The permittee shall be responsible for providing witnesses/escorts during inspections. Inspectors shall abide by all company safety rules and shall be equipped with standard safety equipment (hard hat, safety shoes, safety glasses) normally required by industrial facilities.
- g. Upon written request copies of field notes, drawings, etc., taken by department personnel during an inspection shall be provided to the permittee after the final inspection report has been completed.

#### 2. Representative Sampling

Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. All samples shall be taken at the outfall location(s) indicated in the permit. The state administrative authority shall be notified prior to any changes in the outfall location(s). Any changes in the outfall location(s) will be subject to modification, revocation and reissuance in accordance with LAC 33:1X.2903.

#### 3. Retention of Records

Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR 503), the permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of the sample, measurement, report, or application. This period may be extended by request of the state administrative authority at any time.

#### 4. Record Contents

Records of monitoring information shall include:

- a. The date, exact place, and time of sampling or measurements;
- b. The individual(s) who performed the sampling or measurements;
- c. The date(s) analyses were performed;
- d. The time(s) analyses were begun and ended
- e. The individual(s) who performed the analyses;
- f. The analytical techniques or methods used;
- g. The results of such analyses; and
- h. The results of all quality control procedures.

#### 5. Monitoring Procedures

- a. Monitoring results must be conducted according to test procedures approved under 40 CFR Part 136 (See LAC 33:IX.4901) or, in the case of sludge use or disposal, approved under 40 CFR part 136 (See LAC 33:IX.4901) unless otherwise specified in 40 CFR part 503, unless other test procedures have been specified in this permit. This includes procedures contained in the latest EPA approved edition of the following publications:
  - (1) "Standard Methods for the Examination of Water and Waste Water". This publication is available from the American Public Health Association, Publication Sales, P. O. Box 753, Waldorf, MD 20604-0573, Phone number (301) 893-1894, Fax number (301) 843-0159.
  - (2) "Annual Book of Standards, Vols 1101-1103, Water I, Water II, and Atmospheric Analysis". This publication is available from the American Society for Testing Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, Phone number (610) 832-9500.
  - (3) "Methods for Chemical Analysis of Water and Wastes, Revised, March 1983," U.S. Environmental Protection Agency, Analytical Quality Control Laboratory, Cincinnati, Ohio. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS publication number PB-84-128677.
- b. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instruments at intervals frequent enough to insure accuracy of measurements and shall maintain appropriate records of such activities.
- c. An adequate analytical quality control program, including the analyses of sufficient standards, spikes, and duplicate samples to insure the accuracy of all required analytical results shall be maintained by the permittee or designated commercial laboratory. General sampling protocol shall follow guidelines established in the "Handbook for Sampling and Sample Preservation of Water and Wastewater, 1982" U.S. Environmental Protection Agency. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS

publication number PB-83-124503. General laboratory procedures including glassware cleaning, etc. can be found in the "Handbook for Analytical Quality Control in Water and Wastewater Laboratories, 1979," U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory. This publication is available from the Environmental Protection Agency, Phone number (513) 569-7562. Order by EPA publication number EPA-600/4-79-019.

#### 6. Flow Measurements

Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated, and maintained to insure that the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than 10% from true discharge rates throughout the range of expected discharge volumes. Guidance in selection, installation, calibration and operation of acceptable flow measurement devices can be obtained from the following references:

- a. "A Guide to Methods and Standards for the Measurement of Water Flow, 1975," U.S. Department of Commerce, National Bureau of Standards. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS publication number COM-75-10683.
- b. "Flow Measurement in Open Channels and Closed Conduits, Volumes 1 and 2," U.S. Department of Commerce, National Bureau of Standards. This publication is available from the National Technical Service (NTIS), Springfield, VA, 22161, Phone number (800) 553-6847. Order by NTIS publication number PB-273 535.
- c. "NPDES Compliance Flow Measurement Manual," U.S. Environmental Protection Agency, Office of Water Enforcement. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS publication number PB-82-131178.

#### 7. Prohibition for Tampering: Penalties

- a. LA R.S. 30:2025 provides for punishment of any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit.
- LA R.S. 30:2076.2 provides for penalties for any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non compliance.

#### 8. Additional Monitoring by the Permittee

If the Permittee monitors any pollutant more frequently than required by the permit using test procedures approved under 40 CFR Part 136 (See LAC 33:IX.4901) or, in the case of sludge use and disposal, approved under 40 CFR part 136 (See LAC 33:IX.4901) unless otherwise specified in 40 CFR part 503, or as specified in the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the state administrative authority.

#### 9. Averaging of Measurements

Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the state administrative authority in the permit.

## 10. Laboratory Accreditation

- a. LAC 33:1.Subpart 3, Chapters 45-59 provide requirements for an accreditation program specifically applicable to commercial laboratories, wherever located, that provide chemical analyses, analytical results, or other test data to the department, by contract or by agreement, and the data is:
  - (1) Submitted on behalf of any facility, as defined in R.S.30:2004;
  - (2) Required as part of any permit application;

- (3) Required by order of the department;
- (4) Required to be included on any monitoring reports submitted to the department;
- (5) Required to be submitted by contractor
- (6) Otherwise required by department regulations.
- b. The department laboratory accreditation program is designed to ensure the accuracy, precision, and reliability of the data generated, as well as the use of department-approved methodologies in generation of that data. Laboratory data generated by commercial environmental laboratories that are not accredited under these regulations will not be accepted by the department. Retesting of analysis will be required by an accredited commercial laboratory.

Where retesting of effluent is not possible (i.e. data reported on DMRs for prior month's sampling), the data generated will be considered invalid and in violation of the LPDES permit.

c. Regulations on the Environmental Laboratory Accreditation Program and a list of labs that have applied for accreditation, are available on the department website located at:

http://www.deg.state.la.us/laboratory/index.htm.

Questions concerning the program may be directed to (225) 765-0582.

#### SECTION D. REPORTING REQUIREMENTS

#### 1. Facility Changes

The permittee shall give notice to the state administrative authority as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:

- a. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or
- b. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements under LAC 33:IX.2703.A.1.
- c. <u>For Municipal Permits</u>. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to Section 301, or 306 of the CWA if it were directly discharging those pollutants; and any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit. In no case are any new connections, increased flows, or significant changes in influent quality permitted that will cause violation of the effluent limitations specified herein.

## 2. Anticipated Noncompliance

The permittee shall give advance notice to the state administrative authority of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

#### 3. Transfers

This permit is not transferable to any person except after notice to the state administrative authority. The state administrative authority may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the Clean Water Act or the Louisiana Environmental Quality Act. (See LAC 33:IX.2901; in some cases, modification or revocation and reissuance is mandatory.)

a. Transfers by modification. Except as provided in LAC 33: IX.2901.B, a permit may be transferred by the permittee to a new owner or operator only if the permit has been modified or revoked and reissued (under LAC 33:IX.2903. A.2.b), or a minor modification made (under LAC 33:IX.2905) to identify the

new permittee and incorporate such other requirements as may be necessary under the Clean Water Act and the Louisiana Environmental Quality Act.

- b. Automatic transfers. As an alternative to transfers under LAC 33:IX.2901.A, any LPDES permit may be automatically transferred to a new permittee if:
  - The current permittee notifies the state administrative authority at least 30 days in advance of the proposed transfer date in Section D.3.b.(2) below;
  - (2) The notice includes a written agreement between the existing and new permittees containing a specific date for transfer of permit responsibility, coverage, and liability between them;
  - (3) The state administrative authority does not notify the existing permittee and the proposed new permittee of his or her intent to modify or revoke and reissue the permit. A modification under this subsection may also be a minor modification under LAC 33:IX.2905. If this notice is not received, the transfer is effective on the date specified in the agreement mentioned in Section D.3.b.(2) of these standard conditions.

#### 4. Monitoring Reports

Monitoring results shall be reported at the intervals and in the form specified in Part I or Part II of this permit.

The permittee shall submit properly completed Discharge Monitoring Reports (DMRs) on the form specified in the permit. Preprinted DMRs are provided to majors/92-500's and other designated facilities. Please contact the Permit Compliance Unit concerning preprints. Self-generated DMRs must be pre-approved by the Permit Compliance Unit prior to submittal. Self-generated DMRs are approved on an individual basis. Requests for approval of self-generated DMRs should be submitted to:

Supervisor, Permit Compliance Unit Office of Environmental Compliance Post Office Box 4312 Baton Rouge, LA 70821-4312

Copies of blank DMR templates, plus instructions for completing them, and EPA's LPDES Reporting Handbook are available at the department website located at:

## http://www.deq.state.la.us/enforcement/index.htm

## 5. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.

## 6. Requirements for Notification

## a. Emergency Notification

As required by LAC 33.1.3915, in the event of an unauthorized discharge that does cause an emergency condition, the discharger shall notify the hotline (DPS 24-hour Louisiana Emergency Hazardous Materials Hotline) by telephone at (225) 925-6595 (collect calls accepted 24 hours a day) immediately (a reasonable period of time after taking prompt measures to determine the nature, quantity, and potential off-site impact of a release, considering the exigency of the circumstances), but in no case later than one hour after learning of the discharge. (An emergency condition is any condition which could reasonably be expected to endanger the health and safety of the public, cause significant adverse impact to the land, water, or air environment, or cause severe damage to property.) Notification required by this section will be made regardless of the amount of discharge. Prompt Notification Procedures are listed in Section D.6.c. of these standard conditions.

A written report shall be provided within seven calendar days after the notification. The report shall contain the information listed in Section D.6.d. of these standard conditions and any additional information in LAC 33:1.3925 B.

#### b. Prompt Notification

As required by LAC 33:I.3917, in the event of an unauthorized discharge that exceeds a reportable quantity specified in LAC 33:I.Subchapter E, but does not cause an emergency condition, the discharger shall promptly notify the department within 24 hours after learning of the discharge. Notification should be made to the Office of Environmental Compliance, Surveillance Division Single Point of Contact (SPOC) in accordance with LAC 33:I.3923.

In accordance with LAC 33:1.3923, prompt notification shall be provided within a time frame not to exceed 24 hours and shall be given to the Office of Environmental Compliance, Surveillance Division Single Point of Contact (SPOC) as follows:

- (1) by the Online Incident Reporting screens found at <a href="http://www.deq.louisiana.gov/surveillance/irf/forms/">http://www.deq.louisiana.gov/surveillance/irf/forms/</a>;or
- (2) by e-mail utilizing the Incident Report Form and instructions found at http://www.deq.louisiana.gov/surveillance;or
- (3) by telephone at (225) 219-3640 during office hours, or (225) 342-1234 after hours and on weekends and holidays.
- c. <u>Content of Prompt Notifications</u>. The following guidelines will be utilized as appropriate, based on the conditions and circumstances surrounding any unauthorized discharge, to provide relevant information regarding the nature of the discharge:
  - (1) the name of the person making the notification and the telephone number where any return calls from response agencies can be placed;
  - (2) the name and location of the facility or site where the unauthorized discharge is imminent or has occurred, using common landmarks. In the event of an incident involving transport, include the name and address of the transporter and generator;
  - (3) the date and time the incident began and ended, or the estimated time of continuation if the discharge is continuing;
  - (4) the extent of any injuries and identification of any known personnel hazards that response agencies may face:
  - (5) the common or scientific chemical name, the U.S. Department of Transportation hazard classification, and the best estimate of amounts of any and all discharged pollutants;
  - (6) a brief description of the incident sufficient to allow response agencies to formulate their level and extent of response activity.
- d. Written Notification Procedures. Written reports for any unauthorized discharge that requires notification under Section D.6.a. or 6.b., or shall be submitted by the discharger to the Office of Environmental Compliance, Surveillance Division SPOC in accordance with LAC 33:IX.3925 within seven calendar days after the notification required by D.6.a. or 6.b., unless otherwise provided for in a valid permit or other department regulation. Written notification reports shall include, but not be limited to, the following information:
  - (1) the name, address, telephone number, Agency Interest (AI) number (number assigned by the department) if applicable, and any other applicable identification numbers of the person, company, or other party who is filing the written report, and specific identification that the report is the written follow-up report required by this section;

- (2) the time and date of prompt notification, the state official contacted when reporting, the name of person making that notification, and identification of the site or facility, vessel, transport vehicle, or storage area from which the unauthorized discharge occurred;
- (3) date(s), time(s), and duration of the unauthorized discharge and, if not corrected, the anticipated time it is expected to continue;
- (4) details of the circumstances (unauthorized discharge description and root cause) and events leading to any unauthorized discharge, including incidents of loss of sources of radiation, and if the release point is subject to a permit:
  - (a) the current permitted limit for the pollutant(s) released; and
  - (b) the permitted release point/outfall ID.
- (5) the common or scientific chemical name of each specific pollutant that was released as the result of an unauthorized discharge, including the CAS number and U.S. Department of Transportation hazard classification, and the best estimate of amounts of any and all released pollutants (total amount of each compound expressed in pounds, including calculations);
- (6) a statement of the actual or probable fate or disposition of the pollutant or source of radiation and what off-site impact resulted;
- (7) remedial actions taken, or to be taken, to stop unauthorized discharges or to recover pollutants or sources of radiation.
- (8) Written notification reports shall be submitted to the Office of Environmental Compliance, Surveillance Division SPOC by mail or fax. The transmittal envelope and report or fax cover page and report should be clearly marked "UNAUTHORIZED DISCHARGE NOTIFICATION REPORT."

Please see LAC 33:1.3925.B for additional written notification procedures.

- e. <u>Twenty-four Hour Reporting.</u> The permittee shall report any noncompliance which may endanger human health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within five days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and; steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance. The following shall be included as information which must be reported within 24hours:
  - (1) Any unanticipated bypass which exceeds any effluent limitation in the permit (see LAC 33:IX.2701.M.3.b.);
  - (2) Any upset which exceeds any effluent limitation in the permit;
  - (3) Violation of a maximum daily discharge limitation for any of the pollutants listed by the state administrative authority in Part II of the permit to be reported within 24 hours (LAC 33:IX.2707.G.).

## 7. Other Noncompliance

The permittee shall report all instances of noncompliance not reported under Section D.4., 5., and 6., at the time monitoring reports are submitted. The reports shall contain the information listed in Section D.6.e.

#### Other Information

Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the state administrative authority, it shall promptly submit such facts or information.

## 9. Discharges of Toxic Substances

In addition to the reporting requirements under Section D.1-8, all existing manufacturing, commercial, mining, and silvicultural dischargers must notify the Office of Environmental Services, Water and Waste Permits Division as soon as they know or have reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant:
  - listed at LAC 33:IX.7107, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following notification levels:
    - (1) One hundred micrograms per liter (100 μg/L);
    - (2) Two hundred micrograms per liter (200 μg/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μg/L) for 2,4 -dinitro-phenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
    - (3) Five (5) times the maximum concentration value reported for that pollutant in the permit application in accordance with LAC33:IX.2501.G.7; or
    - (4) The level established by the state administrative authority in accordance with LAC 33:IX.2707.F.; or
  - ii. which exceeds the reportable quantity levels for pollutants at LAC 33:1. Subchapter E.
- b. That any activity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant:
  - i. listed at LAC 33:IX.7107, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
    - (1) Five hundred micrograms per liter (500 μg/L);
    - (2) One milligram per liter (1 mg/L) for antimony;
    - (3) Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with LAC 33:IX.2501.G.7; or
    - (4) The level established by the state administrative authority in accordance with LAC 33:IX.2707.F.; or
  - ii. which exceeds the reportable quantity levels for pollutants at LAC 33:1. Subchapter E.

#### 10. Signatory Requirements

All applications, reports, or information submitted to the state administrative authority shall be signed and certified.

- a. All permit applications shall be signed as follows:
  - (1) <u>For a corporation</u> by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
    - (a) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision making functions for the corporation; or,
    - (b) The manager of one or more manufacturing, production, or operating facilities, provided: the manager is authorized to make management decisions that govern the operation of the regulated facility, including having the explicit or implicit duty of making major capital investment recommendations and initiating and directing other comprehensive measures to ensure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and

accurate information for permit application requirements; and the authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

- NOTE: DEQ does not require specific assignments or delegations of authority to responsible corporate officers identified in Section D.10.a.(1)(a). The agency will presume that these responsible corporate officers have the requisite authority to sign permit applications unless the corporation has notified the state administrative authority to the contrary. Corporate procedures governing authority to sign permit applications may provide for assignment or delegation to applicable corporate positions under Section D.10.a.(1)(b), rather than to specific individuals.
  - (2) For a partnership or sole proprietorship by a general partner or the proprietor, respectively; or
  - (3) For a municipality, state, federal, or other public agency by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a federal agency includes:
    - (a) The chief executive officer of the agency, or
    - (b) A senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
  - b. All reports required by permits and other information requested by the state administrative authority shall be signed by a person described in Section D.10.a., or by a duly authorized representative of that person. A person is a duly authorized representative only if:
    - (1) The authorization is made in writing by a person described in Section D.10.a. of these standard conditions;
    - (2) The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company, (a duly authorized representative may thus be either a named individual or an individual occupying a named position; and,
    - (3) The written authorization is submitted to the state administrative authority.
  - c. <u>Changes to authorization</u>. If an authorization under Section D.10.b. is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of Section D.10.b. must be submitted to the state administrative authority prior to or together with any reports, information, or applications to be signed by an authorized representative.
  - d. <u>Certification</u>. Any person signing a document under Section D.10. a. or b. above, shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

#### 11. Availability of Reports

All recorded information (completed permit application forms, fact sheets, draft permits, or any public document) not classified as confidential information under R.S. 30:2030(A) and 30:2074(D) and designated as such in accordance with these regulations (LAC 33:IX.2323 and LAC 33:IX.6503) shall be made available to the public for inspection and copying during normal working hours in accordance with the Public Records Act, R.S. 44:1 et seq.

Claims of confidentiality for the following will be denied:

- a. The name and address of any permit applicant or permittee:
- b. Permit applications, permits, and effluent data.
- c. Information required by LPDES application forms provided by the state administrative authority under LAC 33:IX.2501 may not be claimed confidential. This includes information submitted on the forms themselves and any attachments used to supply information required by the forms.

## SECTION E. PENALTIES FOR VIOLATIONS OF PERMIT CONDITION

## 1. Criminal

#### a. Negligent Violations

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who negligently violates any provision of the LPDES, or any order issued by the secretary under the LPDES, or any permit condition or limitation implementing any such provision in a permit issued under the LPDES by the secretary, or any requirement imposed in a pretreatment program approved under the LPDES is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than 1 year, or both. If a conviction of a person is for a violation committed after a first conviction of such person, he shall be subject to a fine of not more than \$50,000 per day of violation, or imprisonment of not more than two years, or both.

## b. Knowing Violations

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who knowingly violates any provision of the LPDES, or any permit condition or limitation implementing any such provisions in a permit issued under the LPDES, or any requirement imposed in a pretreatment program approved under the LPDES is subject to a fine of not less than \$5,000 nor more than \$50,000 per day of violation, or imprisonment for not more than 3 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person, he shall be subject to a fine of not more than \$100,000 per day of violation, or imprisonment of not more than six years, or both.

## c. Knowing Endangerment

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who knowingly violates any provision of the LPDES, or any order issued by the secretary under the LPDES, or any permit condition or limitation implementing any of such provisions in a permit issued under the LPDES by the secretary, and who knows at that time that he thereby places another person in imminent danger of death or serious bodily injury, shall, upon conviction, be subject to a fine of not more than \$250,000, or by imprisonment for not more than 15 years, or both. A person which is an organization shall, upon conviction of violating this Paragraph, be subject to a fine of not more than one million dollars. If a conviction of a person is for a violation committed after a first conviction of such person under this Paragraph, the maximum punishment shall be doubled with respect to both fine and imprisonment.

#### d. False Statements

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who knowingly makes any false material statement, representation, or certification in any application, record, report, plan, or other document filed or required to be maintained under the LPDES or who knowingly falsifies, tampers with, or renders inaccurate, any monitoring device or method required to be maintained under the LPDES, shall, upon conviction, be subject to a fine of not more than \$10,000, or imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this Subsection, he shall be subject to a fine of not more than \$20,000 per day of violation, or imprisonment of not more than 4 years, or both.

## 2. Civil Penalties

The Louisiana Revised Statutes LA. R. S. 30:2025 provides that any person found to be in violation of any requirement of this Subtitle may be liable for a civil penalty, to be assessed by the secretary, an assistant secretary, or the court, of not more than the cost to the state of any response action made necessary by

such violation which is not voluntarily paid by the violator, and a penalty of not more than \$32,500 for each day of violation. However, when any such violation is done intentionally, willfully, or knowingly, or results in a discharge or disposal which causes irreparable or severe damage to the environment or if the substance discharged is one which endangers human life or health, such person may be liable for an additional penalty of not more than one million dollars.

(PLEASE NOTE: These penalties are listed in their entirety in Subtitle II of Title 30 of the Louisiana Revised Statutes.)

#### SECTION F. DEFINITIONS

All definitions contained in Section 502 of the Clean Water Act shall apply to this permit and are incorporated herein by reference. Unless otherwise specified in this permit, additional definitions of words or phrases used in this permit are as follows:

- 1. <u>Clean Water Act</u> (CWA) means the Clean Water Act (formerly referred to as the Federal Water Pollution Control Act or the Federal Water Pollution Control Act Amendments of 1972) Pub.L.92-500, as amended by Pub.L. 95-217, Pub.L. 95-576, Pub.L. 96-483 and Pub.L. 97-117, 33 U.S.C. 1251 et. seq.).
- 2. <u>Accreditation</u> means the formal recognition by the department of a laboratory's competence wherein specific tests or types of tests can be accurately and successfully performed in compliance with all minimum requirements set forth in the regulations regarding laboratory accreditation.
- 3. <u>Administrator</u> means the Administrator of the U.S. Environmental Protection Agency, or an authorized representative.
- 4. <u>Applicable Standards and Limitations</u> means all state, interstate and federal standards and limitations to which a discharge is subject under the Clean Water Act, including, effluent limitations, water quality standards of performance, toxic effluent standards or prohibitions, best management practices, and pretreatment standards under Sections 301, 302, 303, 304, 306, 307, 308 and 403.
- 5. <u>Applicable water quality standards</u> means all water quality standards to which a discharge is subject under the Clean Water Act.
- 6. <u>Commercial Laboratory</u> means any laboratory, wherever located, that performs analyses or tests for third parties for a fee or other compensation and provides chemical analyses, analytical results, or other test data to the department. The term commercial laboratory does not include laboratories accredited by the Louisiana Department of Health and Hospitals in accordance with R.S.49:1001 et seq.
- 7. <u>Daily Discharge</u> means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day. Daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample.
- 8. Daily Maximum discharge limitation means the highest allowable "daily discharge".
- 9. <u>Director</u> means the U.S. Environmental Protection Agency Regional Administrator, or the state administrative authority, or an authorized representative.
- 10. <u>Domestic septage</u> means either liquid or solid material removed from a septic tank, cesspool, portable toilet, Type III marine sanitation device, or similar treatment works that receives only domestic sewage. Domestic septage does not include liquid or solid material removed from a septic tank, cesspool, or similar treatment works that receives either commercial wastewater or industrial wastewater and does not include grease removed from grease trap at a restaurant.

- 11. <u>Domestic sewage</u> means waste and wastewater from humans, or household operations that is discharged to or otherwise enters a treatment works.
- 12. Environmental Protection Agency or (EPA) means the U.S. Environmental Protection Agency.
- 13. <u>Grab sample</u> means an individual sample collected over a period of time not exceeding 15 minutes, unless more time is needed to collect an adequate sample, and is representative of the discharge.
- 14. <u>Industrial user</u> means a nondomestic discharger, as identified in 40 CFR 403, introducing pollutants to a publicly owned treatment works.
- 15. LEQA means the Louisiana Environmental Quality Act.
- 16. <u>Louisiana Pollutant Discharge Elimination System (LPDES)</u> means those portions of the Louisiana Environmental Quality Act and the Louisiana Water Control Law and all regulations promulgated under their authority which are deemed equivalent to the National Pollutant Discharge Elimination System (NPDES) under the Clean Water Act in accordance with Section 402 of the Clean Water Act and all applicable federal regulations.
- 17. Monthly Average (also known as Daily Average), other than for fecal coliform bacteria, discharge limitations are calculated as the sum of all "daily discharge(s)" measured during a calendar month divided by the number of "daily discharge(s)" measured during that month. When the permit establishes monthly average concentration effluent limitations or conditions, and flow is measured as continuous record or with a totalizer, the monthly average concentration means the arithmetic average (weighted by flow) of all "daily discharge(s)" of concentration determined during the calendar month where C = daily discharge concentration, F = daily flow and n = number of daily samples; monthly average discharge =

$$\frac{C_1F_1 + C_2F_2 + ... + C_nF_n}{F_1 + F_2 + ... + F_n}$$

When the permit establishes monthly average concentration effluent limitations or conditions, and the flow is not measured as a continuous record, then the monthly average concentration means the arithmetic average of all "daily discharge(s)" of concentration determined during the calendar month.

The monthly average for fecal coliform bacteria is the geometric mean of the values for all effluent samples collected during a calendar month.

- 18. <u>National Pollutant Discharge Elimination System</u> means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 318, 402, and 405 of the Clean Water Act.
- 19. Severe property damage means substantial physical damage to property, damage to the treatment facilities that causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- 20. Sewage studge means a solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in a treatment works. Sewage studge includes, but is not limited to, domestic septage; scum or solids removed in primary, secondary, or advanced wastewater treatment processes; portable toilet pumpings, type III marine sanitation device pumpings (33 CFR part 159); and a material derived from sewage studge. Sewage studge does not include ash generated during the firing of sewage studge in a sewage studge incinerator or grit and screenings generated during preliminary treatment of domestic sewage in a treatment works.
- 21. <u>Treatment works</u> means any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage and industrial wastes of a liquid nature to implement Section 201 of the Clean Water Act, or necessary to recycle or reuse water at the most economical cost over the estimated life of the works,

including intercepting sewers, sewage collection systems, pumping, power and other equipment, and their appurtenances, extension, improvement, remodeling, additions, and alterations thereof. (See Part 212 of the Clean Water Act)

- 22. For fecal coliform bacteria, a sample consists of one effluent grab portion collected during a 24-hour period at peak loads.
- 23. The term MGD shall mean million gallons per day.
- 24. The term mg/L shall mean milligrams per liter or parts per million (ppm).
- 25. The term µg/L shall mean micrograms per liter or parts per billion (ppb).
- 26. The term ng/L shall mean nanograms per liter or parts per trillion (ppt).
- 27. Weekly average, (also known as 7-day average), other than for fecal coliform bacteria, is the highest allowable arithmetic mean of the daily discharges over a calendar week, calculated as the sum of all "daily discharge(s)" measured during a calendar week divided by the number of "daily discharge(s)" measured during that week. When the permit establishes weekly average concentration effluent limitations or conditions, and flow is measured as continuous record or with a totalizer, the weekly average concentration means the arithmetic average (weighted by flow) of all "daily discharge(s)" of concentration determined during the calendar week where C = daily discharge concentration, F = daily flow and n = number of daily samples; weekly average discharge =

$$\frac{C_1F_1 + C_2F_2 + ... + C_nF_n}{F_1 + F_2 + ... + F_n}$$

When the permit establishes weekly average concentration effluent limitations or conditions, and the flow is not measured as a continuous record, then the weekly average concentration means the arithmetic average of all "daily discharge(s)" of concentration determined during the calendar week.

The weekly average for fecal coliform bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.

#### 28. Sanitary Wastewater Term(s):

- a. 3-hour composite sample consists of three effluent portions collected no closer together than one hour (with the first portion collected no earlier than 10:00 a.m.) over the 3-hour period and composited according to flow, or a sample continuously collected in proportion to flow over the 3-hour period.
- b. 6-hour composite sample consists of six effluent portions collected no closer together than one hour (with the first portion collected no earlier than 10:00 a.m.) over the 6-hour period and composited according to flow, or a sample continuously collected in proportion to flow over the 6-hour period.
- c.12-hour composite sample consists of 12 effluent portions collected no closer together than one hour over the 12-hour period and composited according to flow, or a sample continuously collected in proportion to flow over the 12-hour period. The daily sampling intervals shall include the highest flow periods.
- d. <u>24-hour composite sample</u> consists of a minimum of 12 effluent portions collected at equal time intervals over the 24-hour period and combined proportional to flow or a sample continuously collected in proportion to flow over the 24-hour period.